Limits of Stability and Adaptation to Wearing Rocker Bottom Shoes

Stability and balance are fundamental during static and dynamic activities. The effects of wearing rocker bottom sole (RBS) shoes on the limits of stability (LOS) and adaptation to wearing RBS shoes need to be investigated. The objectives of this study were to evaluate the LOS when wearing RBS shoes...

Full description

Saved in:
Bibliographic Details
Published inFoot & ankle international Vol. 35; no. 6; p. 607
Main Authors Vieira, Edgar Ramos, Guerrero, Gerardo, Holt, Daniel, Arreaza, Monica, Veroes, Valentina, Brunt, Denis
Format Journal Article
LanguageEnglish
Published United States 01.06.2014
Subjects
Online AccessGet more information
ISSN1944-7876
DOI10.1177/1071100714531227

Cover

Loading…
More Information
Summary:Stability and balance are fundamental during static and dynamic activities. The effects of wearing rocker bottom sole (RBS) shoes on the limits of stability (LOS) and adaptation to wearing RBS shoes need to be investigated. The objectives of this study were to evaluate the LOS when wearing RBS shoes, and to evaluate if people improve their stability while wearing RBS shoes over time. Eleven female subjects with no lower extremity impairments participated in the study. The LOS were tested at baseline and weeks 3 and 6 using a Neurocom SMART EquiTest equipment. Center of pressure (CoP) was determined using force plates, and the center of gravity (CoG) position was estimated from the CoP measures and subjects' anthropometry. Subjects performed a series of tasks that involved leaning in different directions so as to move the vertical projection of their CoG. End-point excursions of the CoG floor projection were calculated as a percentage of the distance between the starting position and the target. Considering the body as an inverted pendulum, we recorded the average angular velocity of the inverted pendulum during the movements and quantified directional control as a percentage of movement toward versus away from the target. Shoe types were compared using paired t tests, and sessions were compared using repeated measures ANOVA. The angular velocities of the inverted pendulum (ie, CoG velocity) were not significantly different between shoe conditions in the front and back directions at baseline (4 ± 3 with RBS vs 5 ± 2 deg/sec with regular shoes, and 4 ± 1 vs 6 ± 4 deg/sec). Front directional control of the CoG was significantly worse with RBS shoes at weeks 3 and 6 ( P < .015). Front end-point excursions were also lower with RBS shoes both at baseline and week 6 ( P < .014). There were no significant changes over time. The findings indicate that the LOS were negatively affected by wearing RBS shoes and that people do not improve their stability while wearing these shoes even after a 6-week period of use. This study shows that wearing RBS shoes increase instability and the instability remains even after wearing these shoes for six weeks.
ISSN:1944-7876
DOI:10.1177/1071100714531227