Single wall carbon nanotube templated oriented crystallization of poly(vinyl alcohol)
Shearing of poly(vinyl alcohol) (PVA)/single wall carbon nanotube (SWNT) dispersions result in the formation of self-assembled oriented PVA/SWNT fibers or ribbons, while PVA solution results in the formation of unoriented fibers. Diameter/width and length of these self-assembled fibers was 5–45 μm a...
Saved in:
Published in | Polymer (Guilford) Vol. 47; no. 11; pp. 3705 - 3710 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
17.05.2006
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Shearing of poly(vinyl alcohol) (PVA)/single wall carbon nanotube (SWNT) dispersions result in the formation of self-assembled oriented PVA/SWNT fibers or ribbons, while PVA solution results in the formation of unoriented fibers. Diameter/width and length of these self-assembled fibers was 5–45
μm and 0.5–3
mm, respectively. High-resolution transmission electron micrographs showed well resolved PVA (200) lattice with molecules oriented parallel to the nanotube axis. Nanotube orientation in the self-assembled fibers was also determined from Raman spectroscopy. PVA fibers exhibited about 48% crystallinity, while crystallinity in PVA/SWNT fibers was 84% as determined by wide angle X-ray diffraction. PVA and carbon nanotubes were at an angle of 25–40° to the self-assembled fiber axis. In comparison to PVA, PVA/SWNT samples exhibited significantly enhanced electron beam radiation resistance. This study shows that single wall carbon nanotubes not only nucleate polymer crystallization, but also act as a template for polymer orientation. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0032-3861 1873-2291 |
DOI: | 10.1016/j.polymer.2006.03.076 |