Predicting CKD progression using time-series clustering and light gradient boosting machines

Predicting the transition of kidney function in chronic kidney disease is difficult as specific symptoms are lacking and often overlooked, and progress occurs due to complicating factors. In this study, we applied time-series cluster analysis and a light gradient boosting machine to predict the traj...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; p. 1723
Main Authors Saito, Hirotaka, Yoshimura, Hiroki, Tanaka, Kenichi, Kimura, Hiroshi, Watanabe, Kimio, Tsubokura, Masaharu, Ejiri, Hiroki, Zhao, Tianchen, Ozaki, Akihiko, Kazama, Sakumi, Shimabukuro, Michio, Asahi, Koichi, Watanabe, Tsuyoshi, Kazama, Junichiro J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.01.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Predicting the transition of kidney function in chronic kidney disease is difficult as specific symptoms are lacking and often overlooked, and progress occurs due to complicating factors. In this study, we applied time-series cluster analysis and a light gradient boosting machine to predict the trajectories of kidney function in non-dialysis dependent chronic kidney disease patients with baseline estimated glomerular filtration rate (GFR) ≥ 45 mL/min/1.73 m 2 . Based on 5-year changes in estimated GFR, participants were stratified into groups with similar trajectories by cluster analysis. Next, we applied the light gradient boosting machine algorithm and Shapley addictive explanation to develop a prediction model for clusters and identify important parameters for prediction. Data from 780 participants were available for analysis. Participants were classified into five classes (Class 1: n = 78, mean [± standard deviation] estimated GFR 100 ± 19.3 mL/min/1.73 m 2 ; Class 2: n = 176, 76.0 ± 9.3 mL/min/1.73 m 2 ; Class 3: n = 191, 59.8 ± 5.9 mL/min/1.73 m 2 ; Class 4: n = 261, 52.7 ± 4.6 mL/min/1.73 m 2 ; and Class 5: n = 74, 53.5 ± 12.0 mL/min/1.73 m 2 ). Declines in estimated GFR were 8.9% in Class 1, 12.2% in Class 2, 4.9% in Class 3, 12.0% in Class 4, and 45.1% in Class 5 during the 5-year period. The accuracy of prediction was 0.675, and the top three most important Shapley addictive explanation values were 1.61 for baseline estimated GFR, 0.12 for hemoglobin, and 0.11 for body mass index. The estimated GFR transition of patients with preserved chronic kidney disease mostly depended on baseline estimated GFR, and the borderline for estimated GFR trajectory was nearly 50 mL/min/1.73 m 2 .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-52251-9