Human Health Risk Assessment of Heavy Metals in the Urban Road Dust of Zhengzhou Metropolis, China

The goal of this research is to assess hazardous heavy metal levels in PM2.5 fractioned road dust in order to quantify the risk of inhalation and potential health effects. To accomplish this, Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was used to determine concentrations of eight heavy me...

Full description

Saved in:
Bibliographic Details
Published inAtmosphere Vol. 12; no. 9; p. 1213
Main Authors Faisal, Muhammad, Wu, Zening, Wang, Huiliang, Hussain, Zafar, Azam, Muhammad Imran
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The goal of this research is to assess hazardous heavy metal levels in PM2.5 fractioned road dust in order to quantify the risk of inhalation and potential health effects. To accomplish this, Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was used to determine concentrations of eight heavy metals (Cr, Cu, Ni, Zn, Cd, As, Pb, and Hg) in the PM2.5 portion of road dust samples from five different land use areas (commercial, residential, industrial, parks, and educational) in Zhengzhou, China. The following were the average heavy metal concentrations in the city: Cr 46.26 mg/kg, Cu 25.13 mg/kg, Ni 12.51 mg/kg, Zn 152.35 mg/kg, Cd 0.56 mg/kg, As 11.53 mg/kg, Pb 52.15 mg/kg, and Hg 0.32 mg/kg. Two pollution indicators, the Pollution Index (PI) and the Geoaccumulation Index (Igeo), were used to determine the degree of contamination. Both PI and Igeo indicated the extreme pollution of Hg and Cd, while PI also ranked Zn in the extreme polluted range. The US Environmental Protection Agency (USEPA) model for adults and children was used to estimate health risks by inhalation. The results identified non-carcinogenic exposure of children to lead (HI > 0.1) in commercial and industrial areas. Both children and adults in Zhengzhou’s commercial, residential, and park areas are exposed to higher levels of copper (Cu), lead (Pb), and zinc (Zn).
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos12091213