Oblique wave scattering by a semi-infinite elastic plate with finite draft floating on a step topography

On the basis of a potential theory and Euler-Bernoulli beam theory, an analytical solution for oblique wave scattering by a semi-infinite elastic plate with finite draft floating on a step topography is developed using matched eigenfunction expansions. Different from previous studies, the effects of...

Full description

Saved in:
Bibliographic Details
Published inActa oceanologica Sinica Vol. 35; no. 7; pp. 113 - 121
Main Authors Guo, Yunxia, Liu, Yong, Meng, Xun
Format Journal Article
LanguageEnglish
Published Beijing The Chinese Society of Oceanography 01.07.2016
Springer Nature B.V
Institute of 0ceanology, Chinese Academy of Sciences, Qingdao 266071, China%Shandong Provincial Key Laboratory of 0cean Engineering, 0cean University of China, Qingdao 266100, China
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:On the basis of a potential theory and Euler-Bernoulli beam theory, an analytical solution for oblique wave scattering by a semi-infinite elastic plate with finite draft floating on a step topography is developed using matched eigenfunction expansions. Different from previous studies, the effects of a wave incident angle, a plate draft, three different plate edge conditions (free, simply supported and built-in) and a sea-bottom topography are all taken into account. Moreover, the plate edge conditions are directly incorporated into linear algebraic equations for determining unknown expansion coefficients in velocity potentials, which leads to a simple and efficient solving procedure. Numerical results show that the convergence of the present solution is good, and an energy conservation relation is well satisfied. Also, the present predictions are in good agreement with known results for special cases. The effects of the wave incident angle, the plate draft, the plate edge conditions and the sea-bottom topography on various hydrodynamic quantities are analyzed. Some useful results are presented for engineering designs.
Bibliography:On the basis of a potential theory and Euler-Bernoulli beam theory, an analytical solution for oblique wave scattering by a semi-infinite elastic plate with finite draft floating on a step topography is developed using matched eigenfunction expansions. Different from previous studies, the effects of a wave incident angle, a plate draft, three different plate edge conditions (free, simply supported and built-in) and a sea-bottom topography are all taken into account. Moreover, the plate edge conditions are directly incorporated into linear algebraic equations for determining unknown expansion coefficients in velocity potentials, which leads to a simple and efficient solving procedure. Numerical results show that the convergence of the present solution is good, and an energy conservation relation is well satisfied. Also, the present predictions are in good agreement with known results for special cases. The effects of the wave incident angle, the plate draft, the plate edge conditions and the sea-bottom topography on various hydrodynamic quantities are analyzed. Some useful results are presented for engineering designs.
elastic plate, draft, plate edge conditions, matched eigenfunction expansions, oblique waves, step topography
11-2056/P
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0253-505X
1869-1099
DOI:10.1007/s13131-015-0760-2