Promotional Properties of ACC Deaminase-Producing Bacterial Strain DY1-3 and Its Enhancement of Maize Resistance to Salt and Drought Stresses
Salt stress and drought stress can decrease the growth and productivity of agricultural crops. Plant growth-promoting bacteria (PGPB) may protect and promote plant growth at abiotic stress. The aim of this study was to search for bacterial strains that can help crops resist rises in drought and salt...
Saved in:
Published in | Microorganisms (Basel) Vol. 11; no. 11; p. 2654 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Salt stress and drought stress can decrease the growth and productivity of agricultural crops. Plant growth-promoting bacteria (PGPB) may protect and promote plant growth at abiotic stress. The aim of this study was to search for bacterial strains that can help crops resist rises in drought and salt stresses, to improve crop seed resistance under drought and salt stresses, and to investigate the effect of bacterial strains that can help crop resist external stresses under different stress conditions. Pseudomonas DY1-3, a strain from the soil under the glacier moss community of Tien Shan No. 1, was selected to investigate its growth-promoting effects. Previous studies have shown that this strain is capable of producing ACC (1-aminocyclopropane-1-carboxylic acid) deaminase. In this experiment, multifunctional biochemical test assays were evaluated to determine their potential as PGPB and their bacterial growth-promoting properties and stress-resistant effects on maize plants were verified through seed germination experiments and pot experiments. The results showed that strain DY1-3 has good salt and drought tolerance, as well as the ability to melt phosphorus, fix nitrogen, and produce iron carriers, IAA, EPS, and other pro-biomasses. This study on the growth-promoting effects of the DY1-3 bacterial strain on maize seeds revealed that the germination rate, primary root length, germ length, number of root meristems, and vigor index of the maize seeds were increased after soaking them in bacterial solution under no-stress, drought-stress, and salt-stress environments. In the potting experiments, seedlings in the experimental group inoculated with DY1-3 showed increased stem thicknesses, primary root length, numbers of root meristems, and plant height compared to control seedlings using sterile water. In the study on the physiological properties of the plants related to resistance to stress, the SOD, POD, CAT, and chlorophyll contents of the seedlings in the experimental group, to which the DY1-3 strain was applied, were higher than those of the control group of seedlings to which the bacterial solution was not applied. The addition of the bacterial solution reduced the content of MDA in the experimental group seedlings, which indicated that DY1-3 could positively affect the promotion of maize seedlings and seeds against abiotic stress. In this study, it was concluded that strain DY1-3 is a valuable strain for application, which can produce a variety of pro-biotic substances to promote plant growth in stress-free environments or to help plants resist abiotic stresses. In addition to this, the strain itself has good salt and drought tolerance, making it an option to help crops grown in saline soils to withstand abiotic stresses, and a promising candidate for future application in agricultural biofertilizers. |
---|---|
ISSN: | 2076-2607 2076-2607 |
DOI: | 10.3390/microorganisms11112654 |