Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin

Coumarin and homologous compounds are the most widely used anticoagulant drugs worldwide. They function as antagonists of vitamin K, an essential cofactor for the posttranslational gamma-glutamyl carboxylation of the so-called vitamin K-dependent proteins. As vitamin K hydroquinone is converted to v...

Full description

Saved in:
Bibliographic Details
Published inThrombosis and haemostasis Vol. 94; no. 4; p. 780
Main Authors Rost, Simone, Fregin, Andreas, Hünerberg, Mirja, Bevans, Carville G, Müller, Clemens R, Oldenburg, Johannes
Format Journal Article
LanguageEnglish
Published Germany 01.10.2005
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Coumarin and homologous compounds are the most widely used anticoagulant drugs worldwide. They function as antagonists of vitamin K, an essential cofactor for the posttranslational gamma-glutamyl carboxylation of the so-called vitamin K-dependent proteins. As vitamin K hydroquinone is converted to vitamin K epoxide (VKO) in every carboxylation step, the epoxide has to be recycled to the reduced form by the vitamin K epoxide reductase complex (VKOR). Recently, a single coumarin-sensitive protein of the putative VKOR enzyme complex was identified in humans (vitamin K epoxide reductase complex subunit 1, VKORC1). Mutations in VKORC1 result in two different phenotypes: warfarin resistance (WR) and multiple coagulation factor deficiency type 2 (VKCFD2). Here,we report on the expression of site-directed VKORC1 mutants, addressing possible structural and functional roles of all seven cysteine residues (Cys16, Cys43, Cys51, Cys85, Cys96, Cys132, Cys135), the highly conserved residue Ser/Thr57, and Arg98, known to cause VKCFD2 in humans. Our results support the hypothesis that the C132-X-X-C135 motif in VKORC1 comprises part of the redox active site that catalyzes VKO reduction and also suggest a crucial role for the hydrophobic Thr-Tyr-Ala motif in coumarin binding. Furthermore, our results support the concept that different structural components of VKORC1 define the binding sites for vitamin K epoxide and coumarin.
ISSN:0340-6245
DOI:10.1160/TH05-02-0082