Electro-osmotic flow through a nanopore

Electro-osmotic pumping of fluid through a nanopore that traverses an insulating membrane is considered. The density of surface charge on the membrane is assumed to be uniform and sufficiently low for the Poisson–Boltzmann equation to be linearized. The reciprocal theorem gives the flow rate generat...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 749; pp. 167 - 183
Main Authors Mao, M., Sherwood, J. D., Ghosal, S.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 25.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Electro-osmotic pumping of fluid through a nanopore that traverses an insulating membrane is considered. The density of surface charge on the membrane is assumed to be uniform and sufficiently low for the Poisson–Boltzmann equation to be linearized. The reciprocal theorem gives the flow rate generated by an applied weak electric field, expressed as an integral over the fluid volume. For a circular hole in a membrane of zero thickness, an analytical result is possible up to quadrature. For a membrane of arbitrary thickness, the full Poisson–Nernst–Planck–Stokes system of equations is solved numerically using a finite volume method. The numerical solution agrees with the standard analytical result for electro-osmotic flux through a long cylindrical pore when the membrane thickness is large compared to the hole diameter. When the membrane thickness is small, the flow rate agrees with that calculated using the reciprocal theorem.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2014.214