Prescribed fire limits wildfire severity without altering ecological importance for birds

Background Fire suppression and anthropogenic land use have increased severity of wildfire in western U.S. dry conifer forests. Managers use fuels reduction methods (e.g., prescribed fire) to limit high-severity wildfire and restore ecological function to these fire-adapted forests. Many avian speci...

Full description

Saved in:
Bibliographic Details
Published inFire ecology Vol. 17; no. 1
Main Authors Latif, Quresh S., Saab, Victoria A., Dudley, Jonathan G.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 15.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background Fire suppression and anthropogenic land use have increased severity of wildfire in western U.S. dry conifer forests. Managers use fuels reduction methods (e.g., prescribed fire) to limit high-severity wildfire and restore ecological function to these fire-adapted forests. Many avian species that evolved in these forests, however, are adapted to conditions created by high-severity wildfire. To fully understand the ecological implications of fuels reduction treatments, we need to understand direct treatment effects and how treatments modulate subsequent wildfire effects on natural communities. We studied bird population and community patterns over nine years at six study units, including unburned (2002–2003), after prescribed fire (2004–2007), and after wildfire (2008–2010). We used a before-after, control-impact (BACI) approach to analyze shifts in species occupancy and richness in treated units following prescribed fire and again in relation to burn severity following wildfire. Results We found examples of both positive and negative effects of wildfire and prescribed fire on bird species occupancy depending on and largely consistent with their life history traits; several woodpecker species, secondary cavity-nesting species, aerial insectivores, and understory species exhibited positive effects, whereas open cup canopy-nesting species and foliage- or bark-gleaning insectivores exhibited negative effects. Wildfire affected more species more consistently through time than did prescribed fire. Wildfire burned units initially treated with prescribed fire less severely than untreated units, but the slopes of wildfire effects on species occupancy were similar regardless of prior prescribed fire treatment. Conclusions Our results suggest managers can employ prescribed fire to reduce wildfire severity without necessarily altering the ecological importance of wildfire to birds (i.e., the identity of species exhibiting negative versus positive responses). Additional study of the ecological implications of various fuels reduction practices, representing a range of intensities and fire regimes, would further inform forest management that includes biodiversity objectives.
ISSN:1933-9747
1933-9747
DOI:10.1186/s42408-021-00123-2