Mechano-sensitivity of β2-adrenoceptors enhances constitutive activation of cAMP generation that is inhibited by inverse agonists

The concept of agonist-independent signalling that can be attenuated by inverse agonists is a fundamental element of the cubic ternary complex model of G protein-coupled receptor (GPCR) activation. This model shows how a GPCR can exist in two conformational states in the absence of ligands; an inact...

Full description

Saved in:
Bibliographic Details
Published inCommunications biology Vol. 7; no. 1; p. 417
Main Authors Cullum, Sean A., Platt, Simon, Dale, Natasha, Isaac, Oliver C., Wragg, Edward S., Soave, Mark, Veprintsev, Dmitry B., Woolard, Jeanette, Kilpatrick, Laura E., Hill, Stephen J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.04.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The concept of agonist-independent signalling that can be attenuated by inverse agonists is a fundamental element of the cubic ternary complex model of G protein-coupled receptor (GPCR) activation. This model shows how a GPCR can exist in two conformational states in the absence of ligands; an inactive R state and an active R* state that differ in their affinities for agonists, inverse agonists, and G-protein alpha subunits. The proportion of R* receptors that exist in the absence of agonists determines the level of constitutive receptor activity. In this study we demonstrate that mechanical stimulation can induce β 2 -adrenoceptor agonist-independent Gs-mediated cAMP signalling that is sensitive to inhibition by inverse agonists such as ICI-118551 and propranolol. The size of the mechano-sensitive response is dependent on the cell surface receptor expression level in HEK293G cells, is still observed in a ligand-binding deficient D113A mutant β 2 -adrenoceptor and can be attenuated by site-directed mutagenesis of the extracellular N-glycosylation sites on the N-terminus and second extracellular loop of the β 2 -adrenoceptor. Similar mechano-sensitive agonist-independent responses are observed in HEK293G cells overexpressing the A 2A -adenosine receptor. These data provide new insights into how agonist-independent constitutive receptor activity can be enhanced by mechanical stimulation and regulated by inverse agonists. Use of a cAMP biosensor to study real-time mechano-sensitive enhancement of β2-adrenoceptor constitutive activity and its inhibition by β2-inverse agonists in HEK 293 cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-024-06128-2