Enhancement of Pitting Corrosion Resistance of Austenitic Stainless Steel Through Deposition of Amorphous/Nanocrystalline Oxy-nitrided Phases by Active Screen Plasma Treatment

In this research, AISI 304 austenitic stainless steels were efficient treatment using active screen plasma oxy-nitriding technique. The modified layers were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopes, and atom...

Full description

Saved in:
Bibliographic Details
Published inMaterials research (São Carlos, São Paulo, Brazil) Vol. 21; no. 6; p. 1
Main Authors Li, Yang, He, Yongyong, Qiu, Jianxun, Zhao, Jun, Ye, Qianwen, Zhu, Yijie, Mao, Junyuan
Format Journal Article
LanguageEnglish
Portuguese
Published Sao Carlos Universidade Federal do Sao Carlos, Departamento de Engenharia de Materiais 01.01.2018
ABM, ABC, ABPol
Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this research, AISI 304 austenitic stainless steels were efficient treatment using active screen plasma oxy-nitriding technique. The modified layers were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopes, and atomic force microscopy. In addition, the pitting corrosion resistances of untreated and oxy-nitrided samples were analyzed by polarization method in 3.5 wt.% NaCl solution. The results showed that a duplex-layer consisting of a deposition layer and a diffusion layer (including CrN+α phase and nitrogen expanded austenite phase) was generated. Special concern has been given to the formation of an amorphous top layer for the deposition of nano sized oxy-nitrides. It believed that the deposition layer of oxy-nitrides formed on steel surface during active screen plasma oxy-nitriding that lead to improved corrosion resistance of AISI 304 austenitic stainless steel, so that the pitting corrosive attack can be avoided.
ISSN:1516-1439
1980-5373
1980-5373
DOI:10.1590/1980-5373-mr-2017-0697