The study of the adductor muscle-shell interface structure in three Mollusc species

The adductor muscle scar(AMS) is the fixation point of adductor muscle to the shell. It is an important organicinorganic interface and stress distribution area. Despite recent advances, our understanding of the structure and composition of the AMS remain limited. Here, we report study on the AMS of...

Full description

Saved in:
Bibliographic Details
Published inActa oceanologica Sinica Vol. 35; no. 8; pp. 57 - 64
Main Authors Zhu, Yaoyao, Sun, Chengjun, Song, Yingfei, Jiang, Fenghua, Yin, Xiaofei, Tang, Min, Ding, Haibing
Format Journal Article
LanguageEnglish
Published Beijing The Chinese Society of Oceanography 01.08.2016
Springer Nature B.V
Marine Ecology Center, The First Institute of 0ceanography, State 0ceanic Administration, Qingdao 266061, China%College of Chemistry and Chemical Engineering, 0cean University of China, Qingdao 266100, China%Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan University, Haikou 570228, China%Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, 0cean University of China, Qingdao 266100, China
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The adductor muscle scar(AMS) is the fixation point of adductor muscle to the shell. It is an important organicinorganic interface and stress distribution area. Despite recent advances, our understanding of the structure and composition of the AMS remain limited. Here, we report study on the AMS of three bivalves: Mytilus coruscus,Chlamys farreri and Ruditapes philippinarum. Results showed that there were significant differences among their AMS structures. Both M. coruscus and C. farreri were found to have a columnar layer above the nacreous platelet shell structure at the AMS and this layer was more organized in M. coruscus. There was no distinguishable twolayer structure in R. philippinarum. Atomic force microscopy(AFM) and Fourier transform infrared spectroscopy(FT-IR) results showed that the AMS was much smoother than the nacreous inner shell in all the three species and the AMS had minor different compositions from the nacreous shell layer. SDS-PAGE(sodium dodecyl-sulfate polyacrylamide gel electophoresis) study of the proteins isolated from the interface indicated that there was a 70 k Da protein which seemed to be specifically located to the highly organized columnar AMS structure in Mytilus coruscus. Further analysis of this protein showed it contained high level of Asx(Asp+Asn), Glx(Glu+Gln) and Gly.The special structure and composition of the AMS might play important roles in the stability, adhesion and function at this stress distribution site.
Bibliography:mollusc shell adductor muscle-shell interface shell protein shell microstructure
The adductor muscle scar(AMS) is the fixation point of adductor muscle to the shell. It is an important organicinorganic interface and stress distribution area. Despite recent advances, our understanding of the structure and composition of the AMS remain limited. Here, we report study on the AMS of three bivalves: Mytilus coruscus,Chlamys farreri and Ruditapes philippinarum. Results showed that there were significant differences among their AMS structures. Both M. coruscus and C. farreri were found to have a columnar layer above the nacreous platelet shell structure at the AMS and this layer was more organized in M. coruscus. There was no distinguishable twolayer structure in R. philippinarum. Atomic force microscopy(AFM) and Fourier transform infrared spectroscopy(FT-IR) results showed that the AMS was much smoother than the nacreous inner shell in all the three species and the AMS had minor different compositions from the nacreous shell layer. SDS-PAGE(sodium dodecyl-sulfate polyacrylamide gel electophoresis) study of the proteins isolated from the interface indicated that there was a 70 k Da protein which seemed to be specifically located to the highly organized columnar AMS structure in Mytilus coruscus. Further analysis of this protein showed it contained high level of Asx(Asp+Asn), Glx(Glu+Gln) and Gly.The special structure and composition of the AMS might play important roles in the stability, adhesion and function at this stress distribution site.
11-2056/P
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0253-505X
1869-1099
DOI:10.1007/s13131-016-0878-x