A finite strain elastoplastic model based on Flory’s decomposition and 3D FEM applications

The Flory’s decomposition is an important mathematical tool used to write hyperelastic constitutive models. As far as the author’s knowledge goes, it has not been used to write plastic flow directions in elastoplastic models and this study is an opportunity to introduce this simple strategy in so im...

Full description

Saved in:
Bibliographic Details
Published inComputational mechanics Vol. 69; no. 1; pp. 245 - 266
Main Author Coda, Humberto Breves
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Flory’s decomposition is an important mathematical tool used to write hyperelastic constitutive models. As far as the author’s knowledge goes, it has not been used to write plastic flow directions in elastoplastic models and this study is an opportunity to introduce this simple strategy in so important subject. Adopting this decomposition it is possible to write an alternative total Lagrangian elastoplastic framework for finite strains with simple implementation and good response. Using Flory’s decomposition, strains are split into one volumetric and two isochoric parts. The volumetric part is considered elastic along all strain range and isochoric parts are treated as elastoplastic, i.e., the isochoric plastic flow direction is directly defined by the Flory’s decomposition. Assuming this plastic flow direction it is not necessary to employ the classical Kröner-Lee multiplicative decomposition to consider elastic and plastic parts of finite strains. The proposed model is implemented in a 3D geometrical nonlinear positional FEM code and results are compared with literature experimental and numerical data for validation purposes and applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-7675
1432-0924
DOI:10.1007/s00466-021-02092-4