ECG compression with Douglas-Peucker algorithm and fractal interpolation
In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal curve. This algorithm consists of three steps: First, the original ECG signals are processed and they are converted into a 2-D array. Second, th...
Saved in:
Published in | Mathematical biosciences and engineering : MBE Vol. 18; no. 4; pp. 3502 - 3520 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1551-0018 1551-0018 |
DOI | 10.3934/mbe.2021176 |
Cover
Abstract | In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal curve. This algorithm consists of three steps: First, the original ECG signals are processed and they are converted into a 2-D array. Second, the Douglas-Peucker algorithm (DP) is used to detect critical points (compression phase). Finally, we used the fractal interpolation and the Iterated Function System (IFS) to generate missing points (decompression phase). The proposed (suggested) methodology is tested for different records selected from PhysioNet Database. The obtained results showed that the proposed method has various compression ratios and converges to a high value. The average compression ratios are between 3.19 and 27.58, and also, with a relatively low percentage error (PRD), if we compare it to other methods. Results depict also that the ECG signal can adequately retain its detailed structure when the PSNR exceeds 40 dB.In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal curve. This algorithm consists of three steps: First, the original ECG signals are processed and they are converted into a 2-D array. Second, the Douglas-Peucker algorithm (DP) is used to detect critical points (compression phase). Finally, we used the fractal interpolation and the Iterated Function System (IFS) to generate missing points (decompression phase). The proposed (suggested) methodology is tested for different records selected from PhysioNet Database. The obtained results showed that the proposed method has various compression ratios and converges to a high value. The average compression ratios are between 3.19 and 27.58, and also, with a relatively low percentage error (PRD), if we compare it to other methods. Results depict also that the ECG signal can adequately retain its detailed structure when the PSNR exceeds 40 dB. |
---|---|
AbstractList | In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal curve. This algorithm consists of three steps: First, the original ECG signals are processed and they are converted into a 2-D array. Second, the Douglas-Peucker algorithm (DP) is used to detect critical points (compression phase). Finally, we used the fractal interpolation and the Iterated Function System (IFS) to generate missing points (decompression phase). The proposed (suggested) methodology is tested for different records selected from PhysioNet Database. The obtained results showed that the proposed method has various compression ratios and converges to a high value. The average compression ratios are between 3.19 and 27.58, and also, with a relatively low percentage error (PRD), if we compare it to other methods. Results depict also that the ECG signal can adequately retain its detailed structure when the PSNR exceeds 40 dB. In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal curve. This algorithm consists of three steps: First, the original ECG signals are processed and they are converted into a 2-D array. Second, the Douglas-Peucker algorithm (DP) is used to detect critical points (compression phase). Finally, we used the fractal interpolation and the Iterated Function System (IFS) to generate missing points (decompression phase). The proposed (suggested) methodology is tested for different records selected from PhysioNet Database. The obtained results showed that the proposed method has various compression ratios and converges to a high value. The average compression ratios are between 3.19 and 27.58, and also, with a relatively low percentage error (PRD), if we compare it to other methods. Results depict also that the ECG signal can adequately retain its detailed structure when the PSNR exceeds 40 dB.In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal curve. This algorithm consists of three steps: First, the original ECG signals are processed and they are converted into a 2-D array. Second, the Douglas-Peucker algorithm (DP) is used to detect critical points (compression phase). Finally, we used the fractal interpolation and the Iterated Function System (IFS) to generate missing points (decompression phase). The proposed (suggested) methodology is tested for different records selected from PhysioNet Database. The obtained results showed that the proposed method has various compression ratios and converges to a high value. The average compression ratios are between 3.19 and 27.58, and also, with a relatively low percentage error (PRD), if we compare it to other methods. Results depict also that the ECG signal can adequately retain its detailed structure when the PSNR exceeds 40 dB. |
Author | Guedri, Hichem Bajahzar, Abdullah Belmabrouk, Hafedh |
Author_xml | – sequence: 1 givenname: Hichem surname: Guedri fullname: Guedri, Hichem – sequence: 2 givenname: Abdullah surname: Bajahzar fullname: Bajahzar, Abdullah – sequence: 3 givenname: Hafedh surname: Belmabrouk fullname: Belmabrouk, Hafedh |
BookMark | eNptkEtrHDEQhEWwIX6d8gfmGDBj6z2ao9n4BQbnEJ9Fj6a1kaMZrSUtwf_eE68JxvjUTfdXVVCHZG9OMxLyjdEz0Qt5Pg14xilnrNNfyAFTirWUMrP3bv9KDkt5pFRIIeQBublcXTcuTZuMpYQ0N39D_d38SNt1hNL-xK37g7mBuE55eUwNzGPjM7gKsQlzxbxJEeoiPCb7HmLBk7d5RB6uLn-tbtq7--vb1cVd66TQtdW9831HVUfBey2AmxG0liMqMfZKScZhkNqgGSW6wRmgRnRccK7doLSj4ojc7nzHBI92k8ME-dkmCPb1kPLaQq7BRbTeeM6Ed0YLlKPpwAz9SEVPlyhk3i9e33dem5yetliqnUJxGCPMmLbFciWNZFQqtaCnO9TlVEpG_z-aUfuve7t0b9-6X2j2gXahvtZUM4T4qeYFfHuI_g |
CitedBy_id | crossref_primary_10_3389_fnagi_2024_1354387 crossref_primary_10_1177_15459683231166934 crossref_primary_10_1109_ACCESS_2025_3525591 crossref_primary_10_1007_s10489_023_04814_y crossref_primary_10_3934_mbe_2021447 crossref_primary_10_1016_j_cnsns_2025_108752 crossref_primary_10_1016_j_jelectrocard_2024_153825 |
Cites_doi | 10.1007/978-3-642-18440-6_29 10.3390/s20164611 10.11648/j.cbb.20160404.11 10.1016/S1350-4533(02)00004-8 10.1016/j.cmpb.2019.03.019 10.1109/JSEN.2018.2870228 10.1109/JSEN.2020.3010656 10.5120/ijca2016908894 10.1016/j.chaos.2019.01.010 10.1155/2012/742786 10.1016/B978-0-12-804408-7.00009-6 10.1007/s10916-015-0365-5 10.4236/am.2014.512176 10.3390/e20010056 10.1016/j.dsp.2012.11.005 10.1016/j.jat.2013.07.008 10.1038/s41598-019-40350-x 10.3138/3535-7609-781G-4L20 10.3138/AG00-3264-1Q31-P216 10.1559/152304085783914703 10.1017/S037346331900064X 10.3837/tiis.2020.04.009 10.3390/s20072153 10.1109/MMSP.2005.248574 10.1155/2020/8840910 10.1038/s41598-016-0001-8 10.1007/s40846-020-00554-3 10.1142/S0218348X18500548 10.5772/intechopen.68499 10.1016/j.cogsys.2018.07.004 10.1049/iet-smt.2016.0360 10.1109/JBHI.2017.2698498 10.1007/s41133-020-00039-7 10.1109/ACCESS.2019.2939943 10.1161/01.CIR.101.23.e215 10.1504/IJBET.2014.062746 10.1016/j.jat.2014.10.014 10.3390/math8040525 10.3390/s20174952 10.1016/j.bspc.2018.05.005 10.1016/j.cmpb.2017.04.015 10.1109/ACCESS.2019.2947111 10.1109/CARE.2013.6733763 10.1016/j.oceaneng.2018.08.005 10.36478/jeasci.2020.1337.1340 10.1007/978-3-030-50371-0_17 10.1109/TBME.2005.863961 |
ContentType | Journal Article |
CorporateAuthor | Electronics and Microelectronics Laboratory, Physics Department, Faculty of Sciences, Monastir University, Monastir 5019, Tunisia Department of Computer Science and Information, College of Science, Majmaah University, Zulfi 11932, Saudi Arabia Department of Physics, College of Science Zulfi, Majmaah University, Zulfi 11932, Saudi Arabia |
CorporateAuthor_xml | – name: Department of Computer Science and Information, College of Science, Majmaah University, Zulfi 11932, Saudi Arabia – name: Electronics and Microelectronics Laboratory, Physics Department, Faculty of Sciences, Monastir University, Monastir 5019, Tunisia – name: Department of Physics, College of Science Zulfi, Majmaah University, Zulfi 11932, Saudi Arabia |
DBID | AAYXX CITATION 7X8 DOA |
DOI | 10.3934/mbe.2021176 |
DatabaseName | CrossRef MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1551-0018 |
EndPage | 3520 |
ExternalDocumentID | oai_doaj_org_article_f8f213fc863e4d87a8b9d03903d9e1ff 10_3934_mbe_2021176 |
GroupedDBID | --- 53G 5GY AAYXX AENEX ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBD EBS EJD EMOBN F5P GROUPED_DOAJ IAO ITC J9A ML0 OK1 P2P RAN SV3 TUS 7X8 |
ID | FETCH-LOGICAL-c436t-69cf970570aff63a28da664de53d955412ab468e8d4ecbc8a083723226cb56c03 |
IEDL.DBID | DOA |
ISSN | 1551-0018 |
IngestDate | Wed Aug 27 01:31:38 EDT 2025 Fri Jul 11 02:23:03 EDT 2025 Thu Apr 24 22:59:09 EDT 2025 Tue Jul 01 02:58:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-69cf970570aff63a28da664de53d955412ab468e8d4ecbc8a083723226cb56c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/f8f213fc863e4d87a8b9d03903d9e1ff |
PQID | 2548410455 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f8f213fc863e4d87a8b9d03903d9e1ff proquest_miscellaneous_2548410455 crossref_primary_10_3934_mbe_2021176 crossref_citationtrail_10_3934_mbe_2021176 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Mathematical biosciences and engineering : MBE |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/mbe.2021176-31 key-10.3934/mbe.2021176-30 key-10.3934/mbe.2021176-33 key-10.3934/mbe.2021176-32 key-10.3934/mbe.2021176-28 key-10.3934/mbe.2021176-27 key-10.3934/mbe.2021176-29 key-10.3934/mbe.2021176-24 key-10.3934/mbe.2021176-23 key-10.3934/mbe.2021176-26 key-10.3934/mbe.2021176-25 key-10.3934/mbe.2021176-42 key-10.3934/mbe.2021176-41 key-10.3934/mbe.2021176-44 key-10.3934/mbe.2021176-43 key-10.3934/mbe.2021176-40 key-10.3934/mbe.2021176-39 key-10.3934/mbe.2021176-38 key-10.3934/mbe.2021176-35 key-10.3934/mbe.2021176-34 key-10.3934/mbe.2021176-37 key-10.3934/mbe.2021176-36 key-10.3934/mbe.2021176-53 key-10.3934/mbe.2021176-52 key-10.3934/mbe.2021176-11 key-10.3934/mbe.2021176-10 key-10.3934/mbe.2021176-54 key-10.3934/mbe.2021176-51 key-10.3934/mbe.2021176-50 key-10.3934/mbe.2021176-49 key-10.3934/mbe.2021176-46 key-10.3934/mbe.2021176-45 key-10.3934/mbe.2021176-48 key-10.3934/mbe.2021176-47 key-10.3934/mbe.2021176-20 key-10.3934/mbe.2021176-22 key-10.3934/mbe.2021176-21 key-10.3934/mbe.2021176-7 key-10.3934/mbe.2021176-8 key-10.3934/mbe.2021176-9 key-10.3934/mbe.2021176-17 key-10.3934/mbe.2021176-16 key-10.3934/mbe.2021176-1 key-10.3934/mbe.2021176-19 key-10.3934/mbe.2021176-2 key-10.3934/mbe.2021176-18 key-10.3934/mbe.2021176-3 key-10.3934/mbe.2021176-13 key-10.3934/mbe.2021176-4 key-10.3934/mbe.2021176-12 key-10.3934/mbe.2021176-5 key-10.3934/mbe.2021176-15 key-10.3934/mbe.2021176-6 key-10.3934/mbe.2021176-14 |
References_xml | – ident: key-10.3934/mbe.2021176-10 doi: 10.1007/978-3-642-18440-6_29 – ident: key-10.3934/mbe.2021176-4 doi: 10.3390/s20164611 – ident: key-10.3934/mbe.2021176-34 doi: 10.11648/j.cbb.20160404.11 – ident: key-10.3934/mbe.2021176-13 doi: 10.1016/S1350-4533(02)00004-8 – ident: key-10.3934/mbe.2021176-50 doi: 10.1016/j.cmpb.2019.03.019 – ident: key-10.3934/mbe.2021176-19 – ident: key-10.3934/mbe.2021176-46 doi: 10.1109/JSEN.2018.2870228 – ident: key-10.3934/mbe.2021176-1 doi: 10.1109/JSEN.2020.3010656 – ident: key-10.3934/mbe.2021176-37 doi: 10.5120/ijca2016908894 – ident: key-10.3934/mbe.2021176-25 doi: 10.1016/j.chaos.2019.01.010 – ident: key-10.3934/mbe.2021176-12 doi: 10.1155/2012/742786 – ident: key-10.3934/mbe.2021176-38 – ident: key-10.3934/mbe.2021176-28 doi: 10.1016/B978-0-12-804408-7.00009-6 – ident: key-10.3934/mbe.2021176-45 doi: 10.1007/s10916-015-0365-5 – ident: key-10.3934/mbe.2021176-30 doi: 10.4236/am.2014.512176 – ident: key-10.3934/mbe.2021176-32 doi: 10.3390/e20010056 – ident: key-10.3934/mbe.2021176-11 doi: 10.1016/j.dsp.2012.11.005 – ident: key-10.3934/mbe.2021176-33 doi: 10.1016/j.jat.2013.07.008 – ident: key-10.3934/mbe.2021176-36 doi: 10.1038/s41598-019-40350-x – ident: key-10.3934/mbe.2021176-20 doi: 10.3138/3535-7609-781G-4L20 – ident: key-10.3934/mbe.2021176-22 doi: 10.3138/AG00-3264-1Q31-P216 – ident: key-10.3934/mbe.2021176-21 doi: 10.1559/152304085783914703 – ident: key-10.3934/mbe.2021176-17 doi: 10.1017/S037346331900064X – ident: key-10.3934/mbe.2021176-9 doi: 10.1038/s41598-019-40350-x – ident: key-10.3934/mbe.2021176-15 doi: 10.3837/tiis.2020.04.009 – ident: key-10.3934/mbe.2021176-7 doi: 10.3390/s20072153 – ident: key-10.3934/mbe.2021176-39 doi: 10.1109/MMSP.2005.248574 – ident: key-10.3934/mbe.2021176-3 doi: 10.1155/2020/8840910 – ident: key-10.3934/mbe.2021176-35 doi: 10.1038/s41598-016-0001-8 – ident: key-10.3934/mbe.2021176-5 doi: 10.1007/s40846-020-00554-3 – ident: key-10.3934/mbe.2021176-26 doi: 10.1142/S0218348X18500548 – ident: key-10.3934/mbe.2021176-23 doi: 10.5772/intechopen.68499 – ident: key-10.3934/mbe.2021176-51 doi: 10.1016/j.cogsys.2018.07.004 – ident: key-10.3934/mbe.2021176-41 doi: 10.1049/iet-smt.2016.0360 – ident: key-10.3934/mbe.2021176-47 doi: 10.1109/JBHI.2017.2698498 – ident: key-10.3934/mbe.2021176-44 doi: 10.1007/s41133-020-00039-7 – ident: key-10.3934/mbe.2021176-54 doi: 10.1109/ACCESS.2019.2939943 – ident: key-10.3934/mbe.2021176-53 doi: 10.1161/01.CIR.101.23.e215 – ident: key-10.3934/mbe.2021176-42 doi: 10.1504/IJBET.2014.062746 – ident: key-10.3934/mbe.2021176-31 doi: 10.1016/j.jat.2014.10.014 – ident: key-10.3934/mbe.2021176-27 doi: 10.3390/math8040525 – ident: key-10.3934/mbe.2021176-2 doi: 10.3390/s20174952 – ident: key-10.3934/mbe.2021176-48 doi: 10.1016/j.bspc.2018.05.005 – ident: key-10.3934/mbe.2021176-49 doi: 10.1016/j.cmpb.2017.04.015 – ident: key-10.3934/mbe.2021176-18 doi: 10.1109/ACCESS.2019.2947111 – ident: key-10.3934/mbe.2021176-29 – ident: key-10.3934/mbe.2021176-43 doi: 10.1109/CARE.2013.6733763 – ident: key-10.3934/mbe.2021176-16 doi: 10.1016/j.oceaneng.2018.08.005 – ident: key-10.3934/mbe.2021176-6 doi: 10.1109/JSEN.2020.3010656 – ident: key-10.3934/mbe.2021176-8 – ident: key-10.3934/mbe.2021176-24 doi: 10.36478/jeasci.2020.1337.1340 – ident: key-10.3934/mbe.2021176-14 doi: 10.1007/978-3-030-50371-0_17 – ident: key-10.3934/mbe.2021176-40 doi: 10.1109/TBME.2005.863961 – ident: key-10.3934/mbe.2021176-52 |
SSID | ssj0034334 |
Score | 2.2481663 |
Snippet | In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3502 |
SubjectTerms | compression method douglas-peucker algorithm (dp) electrocardiogram (ecg) fractal interpolation iterated function system (ifs) |
Title | ECG compression with Douglas-Peucker algorithm and fractal interpolation |
URI | https://www.proquest.com/docview/2548410455 https://doaj.org/article/f8f213fc863e4d87a8b9d03903d9e1ff |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iCF7ET5xfRNhJCGubNE2OOqZDUDw42C3kU4WtE90O_ve-NN0YKHjxWtI2_b305feSl99DqKsLLSz1GWGMagLejxHJXEWYkxIGVJG7Zmng4ZEPR-x-XI7XSn3FnLAkD5yA6wURipwGKzj1zIlKCyPhfplRJ30eQvS-mcyWwVTywZRRytJpPCop601NVMSEWCdKi6zNP41M_w8v3Ewtt7top-WE-Dr1ZQ9t-HofbaUqkV8HaDjo3-GY-p1SVmsc105xy3zJk28yI7CevMwg0H-dYl07HOLhJ3jmWyqjlRLeDtHodvDcH5K2AAKxjPI54dIGWQGjynQInOpCOM05c76EjwcekBfaMC68cMxbY4UGPlUBRSq4NSW3GT1Cm_Ws9scIZ9o6U_GYRwgMKQgTAEktdfwfpaN5B10tYVG2VQePRSomCqKEiKECDFWLYQd1V43fkyjG781uIr6rJlHJurkA9lWtfdVf9u2gy6V1FIz8uJ2haz9bfCoIbQWDaLIsT_7jRadoO_Y7La-coc35x8KfA-GYm4tmbH0DDoTTmQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECG+compression+with+Douglas-Peucker+algorithm+and+fractal+interpolation&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Guedri%2C+Hichem&rft.au=Bajahzar%2C+Abdullah&rft.au=Belmabrouk%2C+Hafedh&rft.date=2021-01-01&rft.issn=1551-0018&rft.eissn=1551-0018&rft.volume=18&rft.issue=4&rft.spage=3502&rft_id=info:doi/10.3934%2Fmbe.2021176&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon |