ECG compression with Douglas-Peucker algorithm and fractal interpolation

In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal curve. This algorithm consists of three steps: First, the original ECG signals are processed and they are converted into a 2-D array. Second, th...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences and engineering : MBE Vol. 18; no. 4; pp. 3502 - 3520
Main Authors Guedri, Hichem, Bajahzar, Abdullah, Belmabrouk, Hafedh
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN1551-0018
1551-0018
DOI10.3934/mbe.2021176

Cover

Abstract In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal curve. This algorithm consists of three steps: First, the original ECG signals are processed and they are converted into a 2-D array. Second, the Douglas-Peucker algorithm (DP) is used to detect critical points (compression phase). Finally, we used the fractal interpolation and the Iterated Function System (IFS) to generate missing points (decompression phase). The proposed (suggested) methodology is tested for different records selected from PhysioNet Database. The obtained results showed that the proposed method has various compression ratios and converges to a high value. The average compression ratios are between 3.19 and 27.58, and also, with a relatively low percentage error (PRD), if we compare it to other methods. Results depict also that the ECG signal can adequately retain its detailed structure when the PSNR exceeds 40 dB.In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal curve. This algorithm consists of three steps: First, the original ECG signals are processed and they are converted into a 2-D array. Second, the Douglas-Peucker algorithm (DP) is used to detect critical points (compression phase). Finally, we used the fractal interpolation and the Iterated Function System (IFS) to generate missing points (decompression phase). The proposed (suggested) methodology is tested for different records selected from PhysioNet Database. The obtained results showed that the proposed method has various compression ratios and converges to a high value. The average compression ratios are between 3.19 and 27.58, and also, with a relatively low percentage error (PRD), if we compare it to other methods. Results depict also that the ECG signal can adequately retain its detailed structure when the PSNR exceeds 40 dB.
AbstractList In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal curve. This algorithm consists of three steps: First, the original ECG signals are processed and they are converted into a 2-D array. Second, the Douglas-Peucker algorithm (DP) is used to detect critical points (compression phase). Finally, we used the fractal interpolation and the Iterated Function System (IFS) to generate missing points (decompression phase). The proposed (suggested) methodology is tested for different records selected from PhysioNet Database. The obtained results showed that the proposed method has various compression ratios and converges to a high value. The average compression ratios are between 3.19 and 27.58, and also, with a relatively low percentage error (PRD), if we compare it to other methods. Results depict also that the ECG signal can adequately retain its detailed structure when the PSNR exceeds 40 dB.
In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal curve. This algorithm consists of three steps: First, the original ECG signals are processed and they are converted into a 2-D array. Second, the Douglas-Peucker algorithm (DP) is used to detect critical points (compression phase). Finally, we used the fractal interpolation and the Iterated Function System (IFS) to generate missing points (decompression phase). The proposed (suggested) methodology is tested for different records selected from PhysioNet Database. The obtained results showed that the proposed method has various compression ratios and converges to a high value. The average compression ratios are between 3.19 and 27.58, and also, with a relatively low percentage error (PRD), if we compare it to other methods. Results depict also that the ECG signal can adequately retain its detailed structure when the PSNR exceeds 40 dB.In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal curve. This algorithm consists of three steps: First, the original ECG signals are processed and they are converted into a 2-D array. Second, the Douglas-Peucker algorithm (DP) is used to detect critical points (compression phase). Finally, we used the fractal interpolation and the Iterated Function System (IFS) to generate missing points (decompression phase). The proposed (suggested) methodology is tested for different records selected from PhysioNet Database. The obtained results showed that the proposed method has various compression ratios and converges to a high value. The average compression ratios are between 3.19 and 27.58, and also, with a relatively low percentage error (PRD), if we compare it to other methods. Results depict also that the ECG signal can adequately retain its detailed structure when the PSNR exceeds 40 dB.
Author Guedri, Hichem
Bajahzar, Abdullah
Belmabrouk, Hafedh
Author_xml – sequence: 1
  givenname: Hichem
  surname: Guedri
  fullname: Guedri, Hichem
– sequence: 2
  givenname: Abdullah
  surname: Bajahzar
  fullname: Bajahzar, Abdullah
– sequence: 3
  givenname: Hafedh
  surname: Belmabrouk
  fullname: Belmabrouk, Hafedh
BookMark eNptkEtrHDEQhEWwIX6d8gfmGDBj6z2ao9n4BQbnEJ9Fj6a1kaMZrSUtwf_eE68JxvjUTfdXVVCHZG9OMxLyjdEz0Qt5Pg14xilnrNNfyAFTirWUMrP3bv9KDkt5pFRIIeQBublcXTcuTZuMpYQ0N39D_d38SNt1hNL-xK37g7mBuE55eUwNzGPjM7gKsQlzxbxJEeoiPCb7HmLBk7d5RB6uLn-tbtq7--vb1cVd66TQtdW9831HVUfBey2AmxG0liMqMfZKScZhkNqgGSW6wRmgRnRccK7doLSj4ojc7nzHBI92k8ME-dkmCPb1kPLaQq7BRbTeeM6Ed0YLlKPpwAz9SEVPlyhk3i9e33dem5yetliqnUJxGCPMmLbFciWNZFQqtaCnO9TlVEpG_z-aUfuve7t0b9-6X2j2gXahvtZUM4T4qeYFfHuI_g
CitedBy_id crossref_primary_10_3389_fnagi_2024_1354387
crossref_primary_10_1177_15459683231166934
crossref_primary_10_1109_ACCESS_2025_3525591
crossref_primary_10_1007_s10489_023_04814_y
crossref_primary_10_3934_mbe_2021447
crossref_primary_10_1016_j_cnsns_2025_108752
crossref_primary_10_1016_j_jelectrocard_2024_153825
Cites_doi 10.1007/978-3-642-18440-6_29
10.3390/s20164611
10.11648/j.cbb.20160404.11
10.1016/S1350-4533(02)00004-8
10.1016/j.cmpb.2019.03.019
10.1109/JSEN.2018.2870228
10.1109/JSEN.2020.3010656
10.5120/ijca2016908894
10.1016/j.chaos.2019.01.010
10.1155/2012/742786
10.1016/B978-0-12-804408-7.00009-6
10.1007/s10916-015-0365-5
10.4236/am.2014.512176
10.3390/e20010056
10.1016/j.dsp.2012.11.005
10.1016/j.jat.2013.07.008
10.1038/s41598-019-40350-x
10.3138/3535-7609-781G-4L20
10.3138/AG00-3264-1Q31-P216
10.1559/152304085783914703
10.1017/S037346331900064X
10.3837/tiis.2020.04.009
10.3390/s20072153
10.1109/MMSP.2005.248574
10.1155/2020/8840910
10.1038/s41598-016-0001-8
10.1007/s40846-020-00554-3
10.1142/S0218348X18500548
10.5772/intechopen.68499
10.1016/j.cogsys.2018.07.004
10.1049/iet-smt.2016.0360
10.1109/JBHI.2017.2698498
10.1007/s41133-020-00039-7
10.1109/ACCESS.2019.2939943
10.1161/01.CIR.101.23.e215
10.1504/IJBET.2014.062746
10.1016/j.jat.2014.10.014
10.3390/math8040525
10.3390/s20174952
10.1016/j.bspc.2018.05.005
10.1016/j.cmpb.2017.04.015
10.1109/ACCESS.2019.2947111
10.1109/CARE.2013.6733763
10.1016/j.oceaneng.2018.08.005
10.36478/jeasci.2020.1337.1340
10.1007/978-3-030-50371-0_17
10.1109/TBME.2005.863961
ContentType Journal Article
CorporateAuthor Electronics and Microelectronics Laboratory, Physics Department, Faculty of Sciences, Monastir University, Monastir 5019, Tunisia
Department of Computer Science and Information, College of Science, Majmaah University, Zulfi 11932, Saudi Arabia
Department of Physics, College of Science Zulfi, Majmaah University, Zulfi 11932, Saudi Arabia
CorporateAuthor_xml – name: Department of Computer Science and Information, College of Science, Majmaah University, Zulfi 11932, Saudi Arabia
– name: Electronics and Microelectronics Laboratory, Physics Department, Faculty of Sciences, Monastir University, Monastir 5019, Tunisia
– name: Department of Physics, College of Science Zulfi, Majmaah University, Zulfi 11932, Saudi Arabia
DBID AAYXX
CITATION
7X8
DOA
DOI 10.3934/mbe.2021176
DatabaseName CrossRef
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-0018
EndPage 3520
ExternalDocumentID oai_doaj_org_article_f8f213fc863e4d87a8b9d03903d9e1ff
10_3934_mbe_2021176
GroupedDBID ---
53G
5GY
AAYXX
AENEX
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
IAO
ITC
J9A
ML0
OK1
P2P
RAN
SV3
TUS
7X8
ID FETCH-LOGICAL-c436t-69cf970570aff63a28da664de53d955412ab468e8d4ecbc8a083723226cb56c03
IEDL.DBID DOA
ISSN 1551-0018
IngestDate Wed Aug 27 01:31:38 EDT 2025
Fri Jul 11 02:23:03 EDT 2025
Thu Apr 24 22:59:09 EDT 2025
Tue Jul 01 02:58:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-69cf970570aff63a28da664de53d955412ab468e8d4ecbc8a083723226cb56c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/f8f213fc863e4d87a8b9d03903d9e1ff
PQID 2548410455
PQPubID 23479
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_f8f213fc863e4d87a8b9d03903d9e1ff
proquest_miscellaneous_2548410455
crossref_primary_10_3934_mbe_2021176
crossref_citationtrail_10_3934_mbe_2021176
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Mathematical biosciences and engineering : MBE
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/mbe.2021176-31
key-10.3934/mbe.2021176-30
key-10.3934/mbe.2021176-33
key-10.3934/mbe.2021176-32
key-10.3934/mbe.2021176-28
key-10.3934/mbe.2021176-27
key-10.3934/mbe.2021176-29
key-10.3934/mbe.2021176-24
key-10.3934/mbe.2021176-23
key-10.3934/mbe.2021176-26
key-10.3934/mbe.2021176-25
key-10.3934/mbe.2021176-42
key-10.3934/mbe.2021176-41
key-10.3934/mbe.2021176-44
key-10.3934/mbe.2021176-43
key-10.3934/mbe.2021176-40
key-10.3934/mbe.2021176-39
key-10.3934/mbe.2021176-38
key-10.3934/mbe.2021176-35
key-10.3934/mbe.2021176-34
key-10.3934/mbe.2021176-37
key-10.3934/mbe.2021176-36
key-10.3934/mbe.2021176-53
key-10.3934/mbe.2021176-52
key-10.3934/mbe.2021176-11
key-10.3934/mbe.2021176-10
key-10.3934/mbe.2021176-54
key-10.3934/mbe.2021176-51
key-10.3934/mbe.2021176-50
key-10.3934/mbe.2021176-49
key-10.3934/mbe.2021176-46
key-10.3934/mbe.2021176-45
key-10.3934/mbe.2021176-48
key-10.3934/mbe.2021176-47
key-10.3934/mbe.2021176-20
key-10.3934/mbe.2021176-22
key-10.3934/mbe.2021176-21
key-10.3934/mbe.2021176-7
key-10.3934/mbe.2021176-8
key-10.3934/mbe.2021176-9
key-10.3934/mbe.2021176-17
key-10.3934/mbe.2021176-16
key-10.3934/mbe.2021176-1
key-10.3934/mbe.2021176-19
key-10.3934/mbe.2021176-2
key-10.3934/mbe.2021176-18
key-10.3934/mbe.2021176-3
key-10.3934/mbe.2021176-13
key-10.3934/mbe.2021176-4
key-10.3934/mbe.2021176-12
key-10.3934/mbe.2021176-5
key-10.3934/mbe.2021176-15
key-10.3934/mbe.2021176-6
key-10.3934/mbe.2021176-14
References_xml – ident: key-10.3934/mbe.2021176-10
  doi: 10.1007/978-3-642-18440-6_29
– ident: key-10.3934/mbe.2021176-4
  doi: 10.3390/s20164611
– ident: key-10.3934/mbe.2021176-34
  doi: 10.11648/j.cbb.20160404.11
– ident: key-10.3934/mbe.2021176-13
  doi: 10.1016/S1350-4533(02)00004-8
– ident: key-10.3934/mbe.2021176-50
  doi: 10.1016/j.cmpb.2019.03.019
– ident: key-10.3934/mbe.2021176-19
– ident: key-10.3934/mbe.2021176-46
  doi: 10.1109/JSEN.2018.2870228
– ident: key-10.3934/mbe.2021176-1
  doi: 10.1109/JSEN.2020.3010656
– ident: key-10.3934/mbe.2021176-37
  doi: 10.5120/ijca2016908894
– ident: key-10.3934/mbe.2021176-25
  doi: 10.1016/j.chaos.2019.01.010
– ident: key-10.3934/mbe.2021176-12
  doi: 10.1155/2012/742786
– ident: key-10.3934/mbe.2021176-38
– ident: key-10.3934/mbe.2021176-28
  doi: 10.1016/B978-0-12-804408-7.00009-6
– ident: key-10.3934/mbe.2021176-45
  doi: 10.1007/s10916-015-0365-5
– ident: key-10.3934/mbe.2021176-30
  doi: 10.4236/am.2014.512176
– ident: key-10.3934/mbe.2021176-32
  doi: 10.3390/e20010056
– ident: key-10.3934/mbe.2021176-11
  doi: 10.1016/j.dsp.2012.11.005
– ident: key-10.3934/mbe.2021176-33
  doi: 10.1016/j.jat.2013.07.008
– ident: key-10.3934/mbe.2021176-36
  doi: 10.1038/s41598-019-40350-x
– ident: key-10.3934/mbe.2021176-20
  doi: 10.3138/3535-7609-781G-4L20
– ident: key-10.3934/mbe.2021176-22
  doi: 10.3138/AG00-3264-1Q31-P216
– ident: key-10.3934/mbe.2021176-21
  doi: 10.1559/152304085783914703
– ident: key-10.3934/mbe.2021176-17
  doi: 10.1017/S037346331900064X
– ident: key-10.3934/mbe.2021176-9
  doi: 10.1038/s41598-019-40350-x
– ident: key-10.3934/mbe.2021176-15
  doi: 10.3837/tiis.2020.04.009
– ident: key-10.3934/mbe.2021176-7
  doi: 10.3390/s20072153
– ident: key-10.3934/mbe.2021176-39
  doi: 10.1109/MMSP.2005.248574
– ident: key-10.3934/mbe.2021176-3
  doi: 10.1155/2020/8840910
– ident: key-10.3934/mbe.2021176-35
  doi: 10.1038/s41598-016-0001-8
– ident: key-10.3934/mbe.2021176-5
  doi: 10.1007/s40846-020-00554-3
– ident: key-10.3934/mbe.2021176-26
  doi: 10.1142/S0218348X18500548
– ident: key-10.3934/mbe.2021176-23
  doi: 10.5772/intechopen.68499
– ident: key-10.3934/mbe.2021176-51
  doi: 10.1016/j.cogsys.2018.07.004
– ident: key-10.3934/mbe.2021176-41
  doi: 10.1049/iet-smt.2016.0360
– ident: key-10.3934/mbe.2021176-47
  doi: 10.1109/JBHI.2017.2698498
– ident: key-10.3934/mbe.2021176-44
  doi: 10.1007/s41133-020-00039-7
– ident: key-10.3934/mbe.2021176-54
  doi: 10.1109/ACCESS.2019.2939943
– ident: key-10.3934/mbe.2021176-53
  doi: 10.1161/01.CIR.101.23.e215
– ident: key-10.3934/mbe.2021176-42
  doi: 10.1504/IJBET.2014.062746
– ident: key-10.3934/mbe.2021176-31
  doi: 10.1016/j.jat.2014.10.014
– ident: key-10.3934/mbe.2021176-27
  doi: 10.3390/math8040525
– ident: key-10.3934/mbe.2021176-2
  doi: 10.3390/s20174952
– ident: key-10.3934/mbe.2021176-48
  doi: 10.1016/j.bspc.2018.05.005
– ident: key-10.3934/mbe.2021176-49
  doi: 10.1016/j.cmpb.2017.04.015
– ident: key-10.3934/mbe.2021176-18
  doi: 10.1109/ACCESS.2019.2947111
– ident: key-10.3934/mbe.2021176-29
– ident: key-10.3934/mbe.2021176-43
  doi: 10.1109/CARE.2013.6733763
– ident: key-10.3934/mbe.2021176-16
  doi: 10.1016/j.oceaneng.2018.08.005
– ident: key-10.3934/mbe.2021176-6
  doi: 10.1109/JSEN.2020.3010656
– ident: key-10.3934/mbe.2021176-8
– ident: key-10.3934/mbe.2021176-24
  doi: 10.36478/jeasci.2020.1337.1340
– ident: key-10.3934/mbe.2021176-14
  doi: 10.1007/978-3-030-50371-0_17
– ident: key-10.3934/mbe.2021176-40
  doi: 10.1109/TBME.2005.863961
– ident: key-10.3934/mbe.2021176-52
SSID ssj0034334
Score 2.2481663
Snippet In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3502
SubjectTerms compression method
douglas-peucker algorithm (dp)
electrocardiogram (ecg)
fractal interpolation
iterated function system (ifs)
Title ECG compression with Douglas-Peucker algorithm and fractal interpolation
URI https://www.proquest.com/docview/2548410455
https://doaj.org/article/f8f213fc863e4d87a8b9d03903d9e1ff
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iCF7ET5xfRNhJCGubNE2OOqZDUDw42C3kU4WtE90O_ve-NN0YKHjxWtI2_b305feSl99DqKsLLSz1GWGMagLejxHJXEWYkxIGVJG7Zmng4ZEPR-x-XI7XSn3FnLAkD5yA6wURipwGKzj1zIlKCyPhfplRJ30eQvS-mcyWwVTywZRRytJpPCop601NVMSEWCdKi6zNP41M_w8v3Ewtt7top-WE-Dr1ZQ9t-HofbaUqkV8HaDjo3-GY-p1SVmsc105xy3zJk28yI7CevMwg0H-dYl07HOLhJ3jmWyqjlRLeDtHodvDcH5K2AAKxjPI54dIGWQGjynQInOpCOM05c76EjwcekBfaMC68cMxbY4UGPlUBRSq4NSW3GT1Cm_Ws9scIZ9o6U_GYRwgMKQgTAEktdfwfpaN5B10tYVG2VQePRSomCqKEiKECDFWLYQd1V43fkyjG781uIr6rJlHJurkA9lWtfdVf9u2gy6V1FIz8uJ2haz9bfCoIbQWDaLIsT_7jRadoO_Y7La-coc35x8KfA-GYm4tmbH0DDoTTmQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECG+compression+with+Douglas-Peucker+algorithm+and+fractal+interpolation&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Guedri%2C+Hichem&rft.au=Bajahzar%2C+Abdullah&rft.au=Belmabrouk%2C+Hafedh&rft.date=2021-01-01&rft.issn=1551-0018&rft.eissn=1551-0018&rft.volume=18&rft.issue=4&rft.spage=3502&rft_id=info:doi/10.3934%2Fmbe.2021176&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon