ECG compression with Douglas-Peucker algorithm and fractal interpolation

In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal curve. This algorithm consists of three steps: First, the original ECG signals are processed and they are converted into a 2-D array. Second, th...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences and engineering : MBE Vol. 18; no. 4; pp. 3502 - 3520
Main Authors Guedri, Hichem, Bajahzar, Abdullah, Belmabrouk, Hafedh
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN1551-0018
1551-0018
DOI10.3934/mbe.2021176

Cover

More Information
Summary:In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal curve. This algorithm consists of three steps: First, the original ECG signals are processed and they are converted into a 2-D array. Second, the Douglas-Peucker algorithm (DP) is used to detect critical points (compression phase). Finally, we used the fractal interpolation and the Iterated Function System (IFS) to generate missing points (decompression phase). The proposed (suggested) methodology is tested for different records selected from PhysioNet Database. The obtained results showed that the proposed method has various compression ratios and converges to a high value. The average compression ratios are between 3.19 and 27.58, and also, with a relatively low percentage error (PRD), if we compare it to other methods. Results depict also that the ECG signal can adequately retain its detailed structure when the PSNR exceeds 40 dB.In this paper, we propose a new ECG compression method using the fractal technique. The proposed approaches utilize the fact that ECG signals are a fractal curve. This algorithm consists of three steps: First, the original ECG signals are processed and they are converted into a 2-D array. Second, the Douglas-Peucker algorithm (DP) is used to detect critical points (compression phase). Finally, we used the fractal interpolation and the Iterated Function System (IFS) to generate missing points (decompression phase). The proposed (suggested) methodology is tested for different records selected from PhysioNet Database. The obtained results showed that the proposed method has various compression ratios and converges to a high value. The average compression ratios are between 3.19 and 27.58, and also, with a relatively low percentage error (PRD), if we compare it to other methods. Results depict also that the ECG signal can adequately retain its detailed structure when the PSNR exceeds 40 dB.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1551-0018
1551-0018
DOI:10.3934/mbe.2021176