A review of cleaning technologies for biomass-derived syngas
Syngas from gasification of carbonaceous feedstocks is used for power production and synthesis of fuels and commodity chemicals. Impurities in gasification feedstocks, especially sulfur, nitrogen, chlorine, and ash, often find their way into syngas and can interfere with downstream applications. Inc...
Saved in:
Published in | Biomass & bioenergy Vol. 52; pp. 54 - 84 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.05.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Syngas from gasification of carbonaceous feedstocks is used for power production and synthesis of fuels and commodity chemicals. Impurities in gasification feedstocks, especially sulfur, nitrogen, chlorine, and ash, often find their way into syngas and can interfere with downstream applications. Incomplete gasification can also produce undesirable products in the raw syngas in the form of tar and particulate char. This paper reviews the technologies for removing contaminants from raw syngas. These technologies are classified according to the gas temperature exiting the cleanup device: hot (T > 300 °C), cold (T < ∼100 °C), and warm gas cleaning regimes. Cold gas cleanup uses relatively mature techniques that are highly effective although they often generate waste water streams and may suffer from energy inefficiencies. The majority of these techniques are based on using wet scrubbers. Hot gas cleaning technologies are attractive because they avoid cooling and reheating the gas stream. Many of these are still under development given the technical difficulties caused by extreme environments. Warm gas cleaning technologies include traditional particulate removal devices along with new approaches for removing tar and chlorine.
► A comprehensive review of cleaning methods for syngas is presented. ► The source of each contaminant group and issues they cause are discussed. ► Contaminants include: particulate matter, tar, sulfur, nitrogen, alkali, chlorine. ► Cleaning processes include hot, cold, and intermediate temperature methods. |
---|---|
Bibliography: | http://dx.doi.org/10.1016/j.biombioe.2013.02.036 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0961-9534 1873-2909 |
DOI: | 10.1016/j.biombioe.2013.02.036 |