Predicting the restricted mean event time with the subject's baseline covariates in survival analysis

For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential ev...

Full description

Saved in:
Bibliographic Details
Published inBiostatistics (Oxford, England) Vol. 15; no. 2; pp. 222 - 233
Main Authors Tian, L., Zhao, L., Wei, L. J.
Format Journal Article
LanguageEnglish
Published England Oxford Publishing Limited (England) 01.04.2014
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential event times measured up to a time point τ and can be estimated consistently by the area under the Kaplan-Meier curve over $[0, \tau ]$. In this paper, we study a class of regression models, which directly relates the RMET to its "baseline" covariates for predicting the future subjects' RMETs. Since the standard Cox and the accelerated failure time models can also be used for estimating such RMETs, we utilize a cross-validation procedure to select the "best" among all the working models considered in the model building and evaluation process. Lastly, we draw inferences for the predicted RMETs to assess the performance of the final selected model using an independent data set or a "hold-out" sample from the original data set. All the proposals are illustrated with the data from the an HIV clinical trial conducted by the AIDS Clinical Trials Group and the primary biliary cirrhosis study conducted by the Mayo Clinic.
AbstractList For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential event times measured up to a time point τ and can be estimated consistently by the area under the Kaplan–Meier curve over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$[0, \tau ]$\end{document} . In this paper, we study a class of regression models, which directly relates the RMET to its “baseline” covariates for predicting the future subjects’ RMETs. Since the standard Cox and the accelerated failure time models can also be used for estimating such RMETs, we utilize a cross-validation procedure to select the “best” among all the working models considered in the model building and evaluation process. Lastly, we draw inferences for the predicted RMETs to assess the performance of the final selected model using an independent data set or a “hold-out” sample from the original data set. All the proposals are illustrated with the data from the an HIV clinical trial conducted by the AIDS Clinical Trials Group and the primary biliary cirrhosis study conducted by the Mayo Clinic.
For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential event times measured up to a time point τ and can be estimated consistently by the area under the Kaplan-Meier curve over $[0, \tau ]$. In this paper, we study a class of regression models, which directly relates the RMET to its "baseline" covariates for predicting the future subjects' RMETs. Since the standard Cox and the accelerated failure time models can also be used for estimating such RMETs, we utilize a cross-validation procedure to select the "best" among all the working models considered in the model building and evaluation process. Lastly, we draw inferences for the predicted RMETs to assess the performance of the final selected model using an independent data set or a "hold-out" sample from the original data set. All the proposals are illustrated with the data from the an HIV clinical trial conducted by the AIDS Clinical Trials Group and the primary biliary cirrhosis study conducted by the Mayo Clinic.For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential event times measured up to a time point τ and can be estimated consistently by the area under the Kaplan-Meier curve over $[0, \tau ]$. In this paper, we study a class of regression models, which directly relates the RMET to its "baseline" covariates for predicting the future subjects' RMETs. Since the standard Cox and the accelerated failure time models can also be used for estimating such RMETs, we utilize a cross-validation procedure to select the "best" among all the working models considered in the model building and evaluation process. Lastly, we draw inferences for the predicted RMETs to assess the performance of the final selected model using an independent data set or a "hold-out" sample from the original data set. All the proposals are illustrated with the data from the an HIV clinical trial conducted by the AIDS Clinical Trials Group and the primary biliary cirrhosis study conducted by the Mayo Clinic.
For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential event times measured up to a time point τ and can be estimated consistently by the area under the Kaplan-Meier curve over $[0, \tau ]$. In this paper, we study a class of regression models, which directly relates the RMET to its "baseline" covariates for predicting the future subjects' RMETs. Since the standard Cox and the accelerated failure time models can also be used for estimating such RMETs, we utilize a cross-validation procedure to select the "best" among all the working models considered in the model building and evaluation process. Lastly, we draw inferences for the predicted RMETs to assess the performance of the final selected model using an independent data set or a "hold-out" sample from the original data set. All the proposals are illustrated with the data from the an HIV clinical trial conducted by the AIDS Clinical Trials Group and the primary biliary cirrhosis study conducted by the Mayo Clinic.
For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential event times measured up to a time point t and can be estimated consistently by the area under the Kaplan-Meier curve over ... . In this paper, we study a class of regression models, which directly relates the RMET to its "baseline" covariates for predicting the future subjects' RMETs. Since the standard Cox and the accelerated failure time models can also be used for estimating such RMETs, we utilize a cross-validation procedure to select the "best" among all the working models considered in the model building and evaluation process. Lastly, we draw inferences for the predicted RMETs to assess the performance of the final selected model using an independent data set or a "hold-out" sample from the original data set. All the proposals are illustrated with the data from the an HIV clinical trial conducted by the AIDS Clinical Trials Group and the primary biliary cirrhosis study conducted by the Mayo Clinic. (ProQuest: ... denotes formulae/symbols omitted.)
Author Tian, L.
Wei, L. J.
Zhao, L.
Author_xml – sequence: 1
  givenname: L.
  surname: Tian
  fullname: Tian, L.
– sequence: 2
  givenname: L.
  surname: Zhao
  fullname: Zhao, L.
– sequence: 3
  givenname: L. J.
  surname: Wei
  fullname: Wei, L. J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24292992$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB_wDxCyxAI2oX7FcVhUQlWBSpXKAtaW49x0PCR2sZ1A_309M6Vqu-jKtu53js71OUR7PnhA6C0lnyhp-XHnQsomu5SdTce__2VSkxfogAqpKsHrZm97ryshhdhHhymtCWGMS_4K7TPBWta27ADBjwi9s9n5K5xXgCOkHMsbejyB8RgW8BlnNwH-6_Jqy6S5W4PNHxLuTILRecA2LCY6kyFh5wsQF7eYERtvxpvk0mv0cjBjgjd35xH69fXs5-n36uLy2_npl4vKCi5zxSnlHWEtAdOLhgDjAxdCDEp2w8CkBCGUJdRCx41qpW1kY3pmW6H6WlEy8CN0svO9nrsJeluyRzPq6-gmE290ME4_nni30ldh0bwVom14Mfh4ZxDDn7n8hZ5csjCOxkOYk6Y1qVktOWUFff8EXYc5loW3VKMoVUIV6t3DRPdR_jdQALEDbAwpRRjuEUr0pmj9qGi9K7rIPj-RWbeBwmYvNz4vvgVZnrgm
CitedBy_id crossref_primary_10_1177_09622802241267812
crossref_primary_10_1200_JCO_2015_64_2488
crossref_primary_10_1111_bjh_13761
crossref_primary_10_1002_sim_10059
crossref_primary_10_1200_JCO_23_01785
crossref_primary_10_1136_bmjopen_2021_050335
crossref_primary_10_4103_ijc_IJC_22_21
crossref_primary_10_1177_09622802231219852
crossref_primary_10_1111_biom_13237
crossref_primary_10_1080_03610926_2024_2391438
crossref_primary_10_1109_JBHI_2023_3292475
crossref_primary_10_1080_10543406_2020_1757692
crossref_primary_10_1002_pst_2004
crossref_primary_10_1007_s10742_020_00222_8
crossref_primary_10_18632_oncotarget_28275
crossref_primary_10_1001_jamacardio_2021_4932
crossref_primary_10_1177_09622802231192960
crossref_primary_10_1002_sim_10180
crossref_primary_10_1002_bimj_70037
crossref_primary_10_1002_wics_1400
crossref_primary_10_1001_jamaoncol_2018_5290
crossref_primary_10_1002_pds_5886
crossref_primary_10_1002_pst_1835
crossref_primary_10_1186_s13048_023_01173_7
crossref_primary_10_1186_s12874_016_0137_z
crossref_primary_10_1164_rccm_202102_0517OC
crossref_primary_10_1177_1740774518769865
crossref_primary_10_1200_JCO_23_00465
crossref_primary_10_1093_ejcts_ezab238
crossref_primary_10_1177_09622802241298702
crossref_primary_10_1111_biom_12384
crossref_primary_10_1002_sim_9399
crossref_primary_10_1016_j_ins_2022_02_047
crossref_primary_10_1200_JCO_2016_69_4539
crossref_primary_10_1016_j_eururo_2019_05_037
crossref_primary_10_1080_02664763_2022_2164759
crossref_primary_10_1155_2022_7264382
crossref_primary_10_1007_s10985_019_09473_1
crossref_primary_10_1002_bimj_70046
crossref_primary_10_5691_jjb_45_135
crossref_primary_10_1093_bioinformatics_btaa1082
crossref_primary_10_1007_s11606_022_07753_5
crossref_primary_10_1177_1740774520972408
crossref_primary_10_1111_sjos_12766
crossref_primary_10_1007_s10985_022_09545_9
crossref_primary_10_1001_jama_2023_7843
crossref_primary_10_1016_j_jembe_2024_152041
crossref_primary_10_1111_imj_14765
crossref_primary_10_1007_s42519_020_00144_1
crossref_primary_10_1177_09622802221102625
crossref_primary_10_1002_sim_70012
crossref_primary_10_1002_sim_8356
crossref_primary_10_1111_biom_12772
crossref_primary_10_1002_pst_2223
crossref_primary_10_1214_17_EJS1305
crossref_primary_10_1002_sim_8750
crossref_primary_10_1111_biom_12770
crossref_primary_10_2337_dc20_2388
crossref_primary_10_3999_jscpt_54_2_89
crossref_primary_10_1001_jamaoto_2023_3634
crossref_primary_10_1001_jamaoncol_2018_5299
crossref_primary_10_1093_cid_ciae326
crossref_primary_10_1007_s10157_023_02417_y
crossref_primary_10_1200_JCO_2017_74_4292
crossref_primary_10_1001_jamaoncol_2020_8002
crossref_primary_10_1177_09622802221102621
crossref_primary_10_1002_sim_7958
crossref_primary_10_1016_j_cct_2024_107440
crossref_primary_10_1080_03610918_2025_2481188
crossref_primary_10_1111_biom_12631
crossref_primary_10_1016_j_annonc_2021_09_011
crossref_primary_10_1016_j_conctc_2021_100732
crossref_primary_10_1001_jamacardio_2022_5279
crossref_primary_10_1002_sim_7676
crossref_primary_10_1177_17407745241254995
crossref_primary_10_3348_kjr_2022_0061
crossref_primary_10_1515_jci_2022_0035
crossref_primary_10_1111_biom_12627
crossref_primary_10_2139_ssrn_4285203
crossref_primary_10_1002_sim_9749
crossref_primary_10_1016_j_jclinepi_2022_01_025
crossref_primary_10_1007_s00394_023_03317_3
crossref_primary_10_1016_j_annepidem_2021_09_016
crossref_primary_10_1016_j_jacc_2020_06_066
crossref_primary_10_1200_PO_20_00164
crossref_primary_10_1007_s00280_018_3529_4
crossref_primary_10_1177_09622802231211009
crossref_primary_10_1016_j_eururo_2022_10_017
crossref_primary_10_1002_sim_8896
crossref_primary_10_1016_j_athoracsur_2021_09_067
crossref_primary_10_1177_09622802241280782
crossref_primary_10_1016_j_jhealeco_2023_102776
crossref_primary_10_1111_1759_7714_13610
crossref_primary_10_1177_1536867X1601600310
crossref_primary_10_1080_19466315_2021_1874507
crossref_primary_10_1002_sim_70031
crossref_primary_10_1002_sim_6591
crossref_primary_10_1007_s40264_022_01206_y
crossref_primary_10_1016_j_ahj_2024_05_013
crossref_primary_10_1097_GME_0000000000000472
crossref_primary_10_1186_s12874_024_02295_2
crossref_primary_10_1177_09622802231199335
crossref_primary_10_7326_M20_4044
crossref_primary_10_1002_sim_9918
crossref_primary_10_1002_bimj_202200371
crossref_primary_10_1080_19466315_2023_2292774
crossref_primary_10_1002_bimj_70009
crossref_primary_10_1007_s40801_023_00374_2
crossref_primary_10_1111_biom_12461
crossref_primary_10_1002_bimj_202200002
crossref_primary_10_1002_pst_2151
crossref_primary_10_1002_pst_2393
crossref_primary_10_3390_math10152573
crossref_primary_10_1161_CIRCOUTCOMES_119_005918
crossref_primary_10_1002_pst_1869
crossref_primary_10_1002_sim_7907
crossref_primary_10_1016_j_cct_2025_107814
crossref_primary_10_1016_j_jvir_2024_10_007
crossref_primary_10_1016_j_ijrobp_2020_06_017
crossref_primary_10_1080_02664763_2020_1815673
crossref_primary_10_1111_biom_13414
crossref_primary_10_1038_s41598_022_16018_4
crossref_primary_10_1016_j_jpain_2024_104695
crossref_primary_10_1002_sim_7220
crossref_primary_10_1002_sim_7222
crossref_primary_10_1111_biom_12690
crossref_primary_10_1001_jamaoncol_2019_3602
crossref_primary_10_1200_JCO_2014_55_2208
crossref_primary_10_1016_j_cct_2022_106758
crossref_primary_10_1161_CIRCULATIONAHA_122_059174
crossref_primary_10_1093_biostatistics_kxae036
crossref_primary_10_1080_10543406_2024_2444242
crossref_primary_10_2215_CJN_0000000000000323
crossref_primary_10_3389_fgene_2020_587378
crossref_primary_10_1001_jamainternmed_2024_0892
crossref_primary_10_1245_s10434_022_12826_0
crossref_primary_10_7326_M14_1741
crossref_primary_10_1186_s12874_020_01098_5
crossref_primary_10_1080_10543406_2023_2275757
crossref_primary_10_1177_09622802231163333
crossref_primary_10_1093_biomet_asw049
crossref_primary_10_1007_s10985_017_9391_6
crossref_primary_10_1111_biom_13891
crossref_primary_10_1002_sim_7236
crossref_primary_10_1002_sim_8206
crossref_primary_10_7759_cureus_76227
crossref_primary_10_1186_s12874_022_01559_z
crossref_primary_10_1002_sim_9495
crossref_primary_10_1093_biomtc_ujae037
crossref_primary_10_5691_jjb_45_115
crossref_primary_10_1080_03610926_2017_1397174
crossref_primary_10_1007_s10985_018_9428_5
crossref_primary_10_7189_jogh_13_06020
crossref_primary_10_1002_pst_1844
crossref_primary_10_1016_j_ajt_2024_02_009
Cites_doi 10.1093/biomet/84.2.339
10.1177/1740774512455464
10.1111/1467-9469.00055
10.1007/s10985-004-4771-0
10.1002/sim.4274
10.1198/016214504000000845
10.1111/j.0006-341X.1999.01101.x
10.1214/aos/1176347261
10.1080/01621459.1989.10478874
10.1093/biomet/asm036
10.1093/biomet/asq012
10.1111/j.2517-6161.1972.tb00899.x
10.1002/sim.4505
10.1093/biomet/90.2.341
10.1111/j.0006-341X.2001.01030.x
10.1214/aos/1176347504
10.1111/j.0006-341X.2002.00773.x
10.1056/NEJM199709113371101
ContentType Journal Article
Copyright Copyright Oxford Publishing Limited(England) Apr 2014
The Author 2013. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2013
Copyright_xml – notice: Copyright Oxford Publishing Limited(England) Apr 2014
– notice: The Author 2013. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1093/biostatistics/kxt050
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1468-4357
EndPage 233
ExternalDocumentID PMC3944973
3248060011
24292992
10_1093_biostatistics_kxt050
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI024643
– fundername: NIAID NIH HHS
  grantid: UM1 AI068616
– fundername: NCI NIH HHS
  grantid: RC4 CA155940
– fundername: NHLBI NIH HHS
  grantid: R01 HL089778
– fundername: NIAID NIH HHS
  grantid: U01 AI068616
– fundername: NLM NIH HHS
  grantid: U54 LM008748
– fundername: NIAID NIH HHS
  grantid: UM1 AI068634
– fundername: NIAID NIH HHS
  grantid: R01 AI052817
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5VS
5WA
6PF
70D
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAWTL
AAYXX
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KBUDW
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NMDNZ
NOMLY
O9-
ODMLO
OJQWA
OJZSN
OK1
OVD
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
ROL
ROX
RUSNO
RW1
RXO
RZO
SV3
TEORI
TJP
TN5
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
AAUQX
ACIPB
AHGBF
C1A
CAG
CGR
COF
CUY
CVF
ECM
EIF
NPM
NTWIH
NU-
O0~
RIG
RNI
7QO
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c436t-3113b0290ead470e23f3444f86bff266e448c01ceb3a896c767ad2c948d5810f3
ISSN 1465-4644
1468-4357
IngestDate Thu Aug 21 13:27:30 EDT 2025
Thu Jul 10 19:56:42 EDT 2025
Mon Jun 30 11:02:18 EDT 2025
Mon Jul 21 06:05:59 EDT 2025
Tue Jul 01 03:45:53 EDT 2025
Thu Apr 24 22:53:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Accelerated failure time model
Cox model
Personalized medicine
Cross-validation
Perturbation-resampling method
Hold-out sample
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-3113b0290ead470e23f3444f86bff266e448c01ceb3a896c767ad2c948d5810f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/biostatistics/article-pdf/15/2/222/608679/kxt050.pdf
PMID 24292992
PQID 1507811848
PQPubID 26167
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3944973
proquest_miscellaneous_1505256312
proquest_journals_1507811848
pubmed_primary_24292992
crossref_primary_10_1093_biostatistics_kxt050
crossref_citationtrail_10_1093_biostatistics_kxt050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Biostatistics (Oxford, England)
PublicationTitleAlternate Biostatistics
PublicationYear 2014
Publisher Oxford Publishing Limited (England)
Oxford University Press
Publisher_xml – name: Oxford Publishing Limited (England)
– name: Oxford University Press
References ZHAO (20_20299707) 1997; 84
Royston (14_40012509) 2011; 30
Chen (3_11437790) 2001; 57
(12_42047175) 1989; 84
(19_29583457) 1990; 18
(5_47001931) 1987; 14
Zhao (21_10655054) 1999; 55
(13_38191864) 1997; 24
Rudser (15_42004823) 2012; 31
(22_47001933) 2012; 9
(4_24240848) 1972; 34
(9_47001932) 1997; 337
(2_37315893) 2010; 97
Jin (10_20302537) 2003; 90
(6_30274602) 1989; 17
(17_28616851) 2007; 94
Andersen (1_18661111) 2004; 10
Gilbert (8_17382254) 2002; 58
(18_29144910) 2005; 100
References_xml – volume: 84
  start-page: 339
  issn: 0006-3444
  issue: 2
  year: 1997
  ident: 20_20299707
  publication-title: Biometrika
  doi: 10.1093/biomet/84.2.339
– volume: 9
  start-page: 570
  year: 2012
  ident: 22_47001933
  publication-title: CLINICAL TRIALS
  doi: 10.1177/1740774512455464
– volume: 24
  start-page: 145
  year: 1997
  ident: 13_38191864
  publication-title: SCANDINAVIAN JOURNAL OF STATISTICS
  doi: 10.1111/1467-9469.00055
– volume: 10
  start-page: 335
  issn: 1380-7870
  issue: 4
  year: 2004
  ident: 1_18661111
  publication-title: Lifetime data analysis
  doi: 10.1007/s10985-004-4771-0
– volume: 30
  start-page: 2409
  issn: 0277-6715
  issue: 19
  year: 2011
  ident: 14_40012509
  publication-title: Statistics in medicine
  doi: 10.1002/sim.4274
– volume: 100
  start-page: 172
  issn: 0162-1459
  year: 2005
  ident: 18_29144910
  doi: 10.1198/016214504000000845
– volume: 55
  start-page: 1101
  issn: 0006-341X
  issue: 4
  year: 1999
  ident: 21_10655054
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.01101.x
– volume: 17
  start-page: 1157
  year: 1989
  ident: 6_30274602
  publication-title: THE ANNALS OF STATISTICS
  doi: 10.1214/aos/1176347261
– volume: 84
  start-page: 1074
  year: 1989
  ident: 12_42047175
  publication-title: JOURNAL OF AMERICAN STATISTICAL ASSOCIATION
  doi: 10.1080/01621459.1989.10478874
– volume: 94
  start-page: 297
  issn: 0006-3444
  issue: 2
  year: 2007
  ident: 17_28616851
  publication-title: Biometrika
  doi: 10.1093/biomet/asm036
– volume: 97
  start-page: 389
  issn: 0006-3444
  issue: 2
  year: 2010
  ident: 2_37315893
  publication-title: Biometrika
  doi: 10.1093/biomet/asq012
– volume: 34
  start-page: 187
  year: 1972
  ident: 4_24240848
  publication-title: JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume: 31
  start-page: 1722
  issn: 0277-6715
  issue: 16
  year: 2012
  ident: 15_42004823
  publication-title: Statistics in medicine
  doi: 10.1002/sim.4505
– volume: 90
  start-page: 341
  issn: 0006-3444
  issue: 2
  year: 2003
  ident: 10_20302537
  publication-title: Biometrika
  doi: 10.1093/biomet/90.2.341
– volume: 57
  start-page: 1030
  issn: 0006-341X
  issue: 4
  year: 2001
  ident: 3_11437790
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.01030.x
– volume: 18
  start-page: 354
  year: 1990
  ident: 19_29583457
  publication-title: THE ANNALS OF STATISTICS
  doi: 10.1214/aos/1176347504
– volume: 58
  start-page: 773
  issn: 0006-341X
  issue: 4
  year: 2002
  ident: 8_17382254
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00773.x
– volume: 14
  start-page: 181
  year: 1987
  ident: 5_47001931
  publication-title: SCANDINAVIAN JOURNAL OF STATISTICS
– volume: 337
  start-page: 725
  year: 1997
  ident: 9_47001932
  publication-title: NEW ENGLAND JOURNAL OF MEDICINEUNBOUND VOLUME
  doi: 10.1056/NEJM199709113371101
SSID ssj0022363
Score 2.460936
Snippet For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 222
SubjectTerms Biostatistics
Clinical trials
HIV
HIV Infections - drug therapy
HIV Infections - mortality
Human immunodeficiency virus
Humans
Liver Cirrhosis, Biliary - mortality
Models, Statistical
Regression analysis
Survival Analysis
Time Factors
Title Predicting the restricted mean event time with the subject's baseline covariates in survival analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/24292992
https://www.proquest.com/docview/1507811848
https://www.proquest.com/docview/1505256312
https://pubmed.ncbi.nlm.nih.gov/PMC3944973
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWIiQuiG8WCjISEgeUNLEdJzkiBCpFIA5b0VuUOLZYFRLUTarCH-BvM2M72aRFQLlEu47XkXdexjNjzxtCnqWZxPo3JqiFjgJhIhWUUoDjCmuf0KVOaruD__6D3D8UB0fJ0WLxc3Jqqe-qUP34bV7J_0gV2kCumCV7CcmOg0IDfAb5whUkDNd_kvHHE9xm6YaMJyyzAWoNbcivGGC35Ey2erwPt0KfTV9h5MWG6XEFs1amak_BZUarE8Mfmx7Ux6nlEHCEJbON33WLOUie3hm5Ss-G4_G-HsgktrBa-8yGcBKfbuctn7TLzw5fHITTEEQ8PbnitKaQSSCkI3IM9dCWBWCLpTNVm0wgxaZ60yUn-yWYOW6MC9rdMV9V04nC9-OzLnLktXM67XPL3Hj40G2782I2TuFGuUKuMvA3rG_-9t3ouTNuS_KN8xxyMHO-Nxtlz40yt3EuOC7nz99ODJrVTXLDeyL0pYPVLbLQzW1yzdUm_X6H6C24KACHbsFFEVzUgosiuCiCy_bx4Hq-oQO06BZadN3QAVp0gNZdcvjm9erVfuBrcgRKcNnBkh3zKmJ5BBpIpJFm3HAhhMlkZQwYexrcfRXFSle8zHKpUpmWNVO5yOokiyPD75Gdpm30A0J5EteMRaYSKgEzUpUmM5mSYHOWdSlYtSR8-BcL5QnrsW7Kl-JPElySYPzVN0fY8pf-u4OACv9qbwr0kjJwvUW2JE_H26B4cTetbHTb2z4J-As8Zkty38lzfCDDInB5DnfSmaTHDkjqPr_TrD9bcndMVM9T_vCS03hErm_fzF2y0530-jGYy131xEL5F-73y5I
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+restricted+mean+event+time+with+the+subject%27s+baseline+covariates+in+survival+analysis&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Tian%2C+L.&rft.au=Zhao%2C+L.&rft.au=Wei%2C+L.+J.&rft.date=2014-04-01&rft.issn=1465-4644&rft.eissn=1468-4357&rft.volume=15&rft.issue=2&rft.spage=222&rft.epage=233&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxt050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_biostatistics_kxt050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon