Predicting the restricted mean event time with the subject's baseline covariates in survival analysis
For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential ev...
Saved in:
Published in | Biostatistics (Oxford, England) Vol. 15; no. 2; pp. 222 - 233 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford Publishing Limited (England)
01.04.2014
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential event times measured up to a time point τ and can be estimated consistently by the area under the Kaplan-Meier curve over $[0, \tau ]$. In this paper, we study a class of regression models, which directly relates the RMET to its "baseline" covariates for predicting the future subjects' RMETs. Since the standard Cox and the accelerated failure time models can also be used for estimating such RMETs, we utilize a cross-validation procedure to select the "best" among all the working models considered in the model building and evaluation process. Lastly, we draw inferences for the predicted RMETs to assess the performance of the final selected model using an independent data set or a "hold-out" sample from the original data set. All the proposals are illustrated with the data from the an HIV clinical trial conducted by the AIDS Clinical Trials Group and the primary biliary cirrhosis study conducted by the Mayo Clinic. |
---|---|
AbstractList | For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential event times measured up to a time point
τ
and can be estimated consistently by the area under the Kaplan–Meier curve over
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$[0, \tau ]$\end{document}
. In this paper, we study a class of regression models, which directly relates the RMET to its “baseline” covariates for predicting the future subjects’ RMETs. Since the standard Cox and the accelerated failure time models can also be used for estimating such RMETs, we utilize a cross-validation procedure to select the “best” among all the working models considered in the model building and evaluation process. Lastly, we draw inferences for the predicted RMETs to assess the performance of the final selected model using an independent data set or a “hold-out” sample from the original data set. All the proposals are illustrated with the data from the an HIV clinical trial conducted by the AIDS Clinical Trials Group and the primary biliary cirrhosis study conducted by the Mayo Clinic. For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential event times measured up to a time point τ and can be estimated consistently by the area under the Kaplan-Meier curve over $[0, \tau ]$. In this paper, we study a class of regression models, which directly relates the RMET to its "baseline" covariates for predicting the future subjects' RMETs. Since the standard Cox and the accelerated failure time models can also be used for estimating such RMETs, we utilize a cross-validation procedure to select the "best" among all the working models considered in the model building and evaluation process. Lastly, we draw inferences for the predicted RMETs to assess the performance of the final selected model using an independent data set or a "hold-out" sample from the original data set. All the proposals are illustrated with the data from the an HIV clinical trial conducted by the AIDS Clinical Trials Group and the primary biliary cirrhosis study conducted by the Mayo Clinic.For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential event times measured up to a time point τ and can be estimated consistently by the area under the Kaplan-Meier curve over $[0, \tau ]$. In this paper, we study a class of regression models, which directly relates the RMET to its "baseline" covariates for predicting the future subjects' RMETs. Since the standard Cox and the accelerated failure time models can also be used for estimating such RMETs, we utilize a cross-validation procedure to select the "best" among all the working models considered in the model building and evaluation process. Lastly, we draw inferences for the predicted RMETs to assess the performance of the final selected model using an independent data set or a "hold-out" sample from the original data set. All the proposals are illustrated with the data from the an HIV clinical trial conducted by the AIDS Clinical Trials Group and the primary biliary cirrhosis study conducted by the Mayo Clinic. For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential event times measured up to a time point τ and can be estimated consistently by the area under the Kaplan-Meier curve over $[0, \tau ]$. In this paper, we study a class of regression models, which directly relates the RMET to its "baseline" covariates for predicting the future subjects' RMETs. Since the standard Cox and the accelerated failure time models can also be used for estimating such RMETs, we utilize a cross-validation procedure to select the "best" among all the working models considered in the model building and evaluation process. Lastly, we draw inferences for the predicted RMETs to assess the performance of the final selected model using an independent data set or a "hold-out" sample from the original data set. All the proposals are illustrated with the data from the an HIV clinical trial conducted by the AIDS Clinical Trials Group and the primary biliary cirrhosis study conducted by the Mayo Clinic. For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential event times measured up to a time point t and can be estimated consistently by the area under the Kaplan-Meier curve over ... . In this paper, we study a class of regression models, which directly relates the RMET to its "baseline" covariates for predicting the future subjects' RMETs. Since the standard Cox and the accelerated failure time models can also be used for estimating such RMETs, we utilize a cross-validation procedure to select the "best" among all the working models considered in the model building and evaluation process. Lastly, we draw inferences for the predicted RMETs to assess the performance of the final selected model using an independent data set or a "hold-out" sample from the original data set. All the proposals are illustrated with the data from the an HIV clinical trial conducted by the AIDS Clinical Trials Group and the primary biliary cirrhosis study conducted by the Mayo Clinic. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Tian, L. Wei, L. J. Zhao, L. |
Author_xml | – sequence: 1 givenname: L. surname: Tian fullname: Tian, L. – sequence: 2 givenname: L. surname: Zhao fullname: Zhao, L. – sequence: 3 givenname: L. J. surname: Wei fullname: Wei, L. J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24292992$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhS1URB_wDxCyxAI2oX7FcVhUQlWBSpXKAtaW49x0PCR2sZ1A_309M6Vqu-jKtu53js71OUR7PnhA6C0lnyhp-XHnQsomu5SdTce__2VSkxfogAqpKsHrZm97ryshhdhHhymtCWGMS_4K7TPBWta27ADBjwi9s9n5K5xXgCOkHMsbejyB8RgW8BlnNwH-6_Jqy6S5W4PNHxLuTILRecA2LCY6kyFh5wsQF7eYERtvxpvk0mv0cjBjgjd35xH69fXs5-n36uLy2_npl4vKCi5zxSnlHWEtAdOLhgDjAxdCDEp2w8CkBCGUJdRCx41qpW1kY3pmW6H6WlEy8CN0svO9nrsJeluyRzPq6-gmE290ME4_nni30ldh0bwVom14Mfh4ZxDDn7n8hZ5csjCOxkOYk6Y1qVktOWUFff8EXYc5loW3VKMoVUIV6t3DRPdR_jdQALEDbAwpRRjuEUr0pmj9qGi9K7rIPj-RWbeBwmYvNz4vvgVZnrgm |
CitedBy_id | crossref_primary_10_1177_09622802241267812 crossref_primary_10_1200_JCO_2015_64_2488 crossref_primary_10_1111_bjh_13761 crossref_primary_10_1002_sim_10059 crossref_primary_10_1200_JCO_23_01785 crossref_primary_10_1136_bmjopen_2021_050335 crossref_primary_10_4103_ijc_IJC_22_21 crossref_primary_10_1177_09622802231219852 crossref_primary_10_1111_biom_13237 crossref_primary_10_1080_03610926_2024_2391438 crossref_primary_10_1109_JBHI_2023_3292475 crossref_primary_10_1080_10543406_2020_1757692 crossref_primary_10_1002_pst_2004 crossref_primary_10_1007_s10742_020_00222_8 crossref_primary_10_18632_oncotarget_28275 crossref_primary_10_1001_jamacardio_2021_4932 crossref_primary_10_1177_09622802231192960 crossref_primary_10_1002_sim_10180 crossref_primary_10_1002_bimj_70037 crossref_primary_10_1002_wics_1400 crossref_primary_10_1001_jamaoncol_2018_5290 crossref_primary_10_1002_pds_5886 crossref_primary_10_1002_pst_1835 crossref_primary_10_1186_s13048_023_01173_7 crossref_primary_10_1186_s12874_016_0137_z crossref_primary_10_1164_rccm_202102_0517OC crossref_primary_10_1177_1740774518769865 crossref_primary_10_1200_JCO_23_00465 crossref_primary_10_1093_ejcts_ezab238 crossref_primary_10_1177_09622802241298702 crossref_primary_10_1111_biom_12384 crossref_primary_10_1002_sim_9399 crossref_primary_10_1016_j_ins_2022_02_047 crossref_primary_10_1200_JCO_2016_69_4539 crossref_primary_10_1016_j_eururo_2019_05_037 crossref_primary_10_1080_02664763_2022_2164759 crossref_primary_10_1155_2022_7264382 crossref_primary_10_1007_s10985_019_09473_1 crossref_primary_10_1002_bimj_70046 crossref_primary_10_5691_jjb_45_135 crossref_primary_10_1093_bioinformatics_btaa1082 crossref_primary_10_1007_s11606_022_07753_5 crossref_primary_10_1177_1740774520972408 crossref_primary_10_1111_sjos_12766 crossref_primary_10_1007_s10985_022_09545_9 crossref_primary_10_1001_jama_2023_7843 crossref_primary_10_1016_j_jembe_2024_152041 crossref_primary_10_1111_imj_14765 crossref_primary_10_1007_s42519_020_00144_1 crossref_primary_10_1177_09622802221102625 crossref_primary_10_1002_sim_70012 crossref_primary_10_1002_sim_8356 crossref_primary_10_1111_biom_12772 crossref_primary_10_1002_pst_2223 crossref_primary_10_1214_17_EJS1305 crossref_primary_10_1002_sim_8750 crossref_primary_10_1111_biom_12770 crossref_primary_10_2337_dc20_2388 crossref_primary_10_3999_jscpt_54_2_89 crossref_primary_10_1001_jamaoto_2023_3634 crossref_primary_10_1001_jamaoncol_2018_5299 crossref_primary_10_1093_cid_ciae326 crossref_primary_10_1007_s10157_023_02417_y crossref_primary_10_1200_JCO_2017_74_4292 crossref_primary_10_1001_jamaoncol_2020_8002 crossref_primary_10_1177_09622802221102621 crossref_primary_10_1002_sim_7958 crossref_primary_10_1016_j_cct_2024_107440 crossref_primary_10_1080_03610918_2025_2481188 crossref_primary_10_1111_biom_12631 crossref_primary_10_1016_j_annonc_2021_09_011 crossref_primary_10_1016_j_conctc_2021_100732 crossref_primary_10_1001_jamacardio_2022_5279 crossref_primary_10_1002_sim_7676 crossref_primary_10_1177_17407745241254995 crossref_primary_10_3348_kjr_2022_0061 crossref_primary_10_1515_jci_2022_0035 crossref_primary_10_1111_biom_12627 crossref_primary_10_2139_ssrn_4285203 crossref_primary_10_1002_sim_9749 crossref_primary_10_1016_j_jclinepi_2022_01_025 crossref_primary_10_1007_s00394_023_03317_3 crossref_primary_10_1016_j_annepidem_2021_09_016 crossref_primary_10_1016_j_jacc_2020_06_066 crossref_primary_10_1200_PO_20_00164 crossref_primary_10_1007_s00280_018_3529_4 crossref_primary_10_1177_09622802231211009 crossref_primary_10_1016_j_eururo_2022_10_017 crossref_primary_10_1002_sim_8896 crossref_primary_10_1016_j_athoracsur_2021_09_067 crossref_primary_10_1177_09622802241280782 crossref_primary_10_1016_j_jhealeco_2023_102776 crossref_primary_10_1111_1759_7714_13610 crossref_primary_10_1177_1536867X1601600310 crossref_primary_10_1080_19466315_2021_1874507 crossref_primary_10_1002_sim_70031 crossref_primary_10_1002_sim_6591 crossref_primary_10_1007_s40264_022_01206_y crossref_primary_10_1016_j_ahj_2024_05_013 crossref_primary_10_1097_GME_0000000000000472 crossref_primary_10_1186_s12874_024_02295_2 crossref_primary_10_1177_09622802231199335 crossref_primary_10_7326_M20_4044 crossref_primary_10_1002_sim_9918 crossref_primary_10_1002_bimj_202200371 crossref_primary_10_1080_19466315_2023_2292774 crossref_primary_10_1002_bimj_70009 crossref_primary_10_1007_s40801_023_00374_2 crossref_primary_10_1111_biom_12461 crossref_primary_10_1002_bimj_202200002 crossref_primary_10_1002_pst_2151 crossref_primary_10_1002_pst_2393 crossref_primary_10_3390_math10152573 crossref_primary_10_1161_CIRCOUTCOMES_119_005918 crossref_primary_10_1002_pst_1869 crossref_primary_10_1002_sim_7907 crossref_primary_10_1016_j_cct_2025_107814 crossref_primary_10_1016_j_jvir_2024_10_007 crossref_primary_10_1016_j_ijrobp_2020_06_017 crossref_primary_10_1080_02664763_2020_1815673 crossref_primary_10_1111_biom_13414 crossref_primary_10_1038_s41598_022_16018_4 crossref_primary_10_1016_j_jpain_2024_104695 crossref_primary_10_1002_sim_7220 crossref_primary_10_1002_sim_7222 crossref_primary_10_1111_biom_12690 crossref_primary_10_1001_jamaoncol_2019_3602 crossref_primary_10_1200_JCO_2014_55_2208 crossref_primary_10_1016_j_cct_2022_106758 crossref_primary_10_1161_CIRCULATIONAHA_122_059174 crossref_primary_10_1093_biostatistics_kxae036 crossref_primary_10_1080_10543406_2024_2444242 crossref_primary_10_2215_CJN_0000000000000323 crossref_primary_10_3389_fgene_2020_587378 crossref_primary_10_1001_jamainternmed_2024_0892 crossref_primary_10_1245_s10434_022_12826_0 crossref_primary_10_7326_M14_1741 crossref_primary_10_1186_s12874_020_01098_5 crossref_primary_10_1080_10543406_2023_2275757 crossref_primary_10_1177_09622802231163333 crossref_primary_10_1093_biomet_asw049 crossref_primary_10_1007_s10985_017_9391_6 crossref_primary_10_1111_biom_13891 crossref_primary_10_1002_sim_7236 crossref_primary_10_1002_sim_8206 crossref_primary_10_7759_cureus_76227 crossref_primary_10_1186_s12874_022_01559_z crossref_primary_10_1002_sim_9495 crossref_primary_10_1093_biomtc_ujae037 crossref_primary_10_5691_jjb_45_115 crossref_primary_10_1080_03610926_2017_1397174 crossref_primary_10_1007_s10985_018_9428_5 crossref_primary_10_7189_jogh_13_06020 crossref_primary_10_1002_pst_1844 crossref_primary_10_1016_j_ajt_2024_02_009 |
Cites_doi | 10.1093/biomet/84.2.339 10.1177/1740774512455464 10.1111/1467-9469.00055 10.1007/s10985-004-4771-0 10.1002/sim.4274 10.1198/016214504000000845 10.1111/j.0006-341X.1999.01101.x 10.1214/aos/1176347261 10.1080/01621459.1989.10478874 10.1093/biomet/asm036 10.1093/biomet/asq012 10.1111/j.2517-6161.1972.tb00899.x 10.1002/sim.4505 10.1093/biomet/90.2.341 10.1111/j.0006-341X.2001.01030.x 10.1214/aos/1176347504 10.1111/j.0006-341X.2002.00773.x 10.1056/NEJM199709113371101 |
ContentType | Journal Article |
Copyright | Copyright Oxford Publishing Limited(England) Apr 2014 The Author 2013. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2013 |
Copyright_xml | – notice: Copyright Oxford Publishing Limited(England) Apr 2014 – notice: The Author 2013. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1093/biostatistics/kxt050 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Biotechnology Research Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1468-4357 |
EndPage | 233 |
ExternalDocumentID | PMC3944973 3248060011 24292992 10_1093_biostatistics_kxt050 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI024643 – fundername: NIAID NIH HHS grantid: UM1 AI068616 – fundername: NCI NIH HHS grantid: RC4 CA155940 – fundername: NHLBI NIH HHS grantid: R01 HL089778 – fundername: NIAID NIH HHS grantid: U01 AI068616 – fundername: NLM NIH HHS grantid: U54 LM008748 – fundername: NIAID NIH HHS grantid: UM1 AI068634 – fundername: NIAID NIH HHS grantid: R01 AI052817 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5VS 5WA 6PF 70D AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAVAP AAWTL AAYXX ABDFA ABDTM ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHXPO AIJHB AJBYB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APWMN ATGXG AXUDD AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQUQU BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBD EBS EE~ EJD EMOBN F5P F9B FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KBUDW KOP KQ8 KSI KSN M-Z N9A NGC NMDNZ NOMLY O9- ODMLO OJQWA OJZSN OK1 OVD P2P PAFKI PEELM PQQKQ Q1. Q5Y RD5 ROL ROX RUSNO RW1 RXO RZO SV3 TEORI TJP TN5 TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 AAUQX ACIPB AHGBF C1A CAG CGR COF CUY CVF ECM EIF NPM NTWIH NU- O0~ RIG RNI 7QO 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c436t-3113b0290ead470e23f3444f86bff266e448c01ceb3a896c767ad2c948d5810f3 |
ISSN | 1465-4644 1468-4357 |
IngestDate | Thu Aug 21 13:27:30 EDT 2025 Thu Jul 10 19:56:42 EDT 2025 Mon Jun 30 11:02:18 EDT 2025 Mon Jul 21 06:05:59 EDT 2025 Tue Jul 01 03:45:53 EDT 2025 Thu Apr 24 22:53:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Accelerated failure time model Cox model Personalized medicine Cross-validation Perturbation-resampling method Hold-out sample |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-3113b0290ead470e23f3444f86bff266e448c01ceb3a896c767ad2c948d5810f3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/biostatistics/article-pdf/15/2/222/608679/kxt050.pdf |
PMID | 24292992 |
PQID | 1507811848 |
PQPubID | 26167 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3944973 proquest_miscellaneous_1505256312 proquest_journals_1507811848 pubmed_primary_24292992 crossref_primary_10_1093_biostatistics_kxt050 crossref_citationtrail_10_1093_biostatistics_kxt050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-01 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Biostatistics (Oxford, England) |
PublicationTitleAlternate | Biostatistics |
PublicationYear | 2014 |
Publisher | Oxford Publishing Limited (England) Oxford University Press |
Publisher_xml | – name: Oxford Publishing Limited (England) – name: Oxford University Press |
References | ZHAO (20_20299707) 1997; 84 Royston (14_40012509) 2011; 30 Chen (3_11437790) 2001; 57 (12_42047175) 1989; 84 (19_29583457) 1990; 18 (5_47001931) 1987; 14 Zhao (21_10655054) 1999; 55 (13_38191864) 1997; 24 Rudser (15_42004823) 2012; 31 (22_47001933) 2012; 9 (4_24240848) 1972; 34 (9_47001932) 1997; 337 (2_37315893) 2010; 97 Jin (10_20302537) 2003; 90 (6_30274602) 1989; 17 (17_28616851) 2007; 94 Andersen (1_18661111) 2004; 10 Gilbert (8_17382254) 2002; 58 (18_29144910) 2005; 100 |
References_xml | – volume: 84 start-page: 339 issn: 0006-3444 issue: 2 year: 1997 ident: 20_20299707 publication-title: Biometrika doi: 10.1093/biomet/84.2.339 – volume: 9 start-page: 570 year: 2012 ident: 22_47001933 publication-title: CLINICAL TRIALS doi: 10.1177/1740774512455464 – volume: 24 start-page: 145 year: 1997 ident: 13_38191864 publication-title: SCANDINAVIAN JOURNAL OF STATISTICS doi: 10.1111/1467-9469.00055 – volume: 10 start-page: 335 issn: 1380-7870 issue: 4 year: 2004 ident: 1_18661111 publication-title: Lifetime data analysis doi: 10.1007/s10985-004-4771-0 – volume: 30 start-page: 2409 issn: 0277-6715 issue: 19 year: 2011 ident: 14_40012509 publication-title: Statistics in medicine doi: 10.1002/sim.4274 – volume: 100 start-page: 172 issn: 0162-1459 year: 2005 ident: 18_29144910 doi: 10.1198/016214504000000845 – volume: 55 start-page: 1101 issn: 0006-341X issue: 4 year: 1999 ident: 21_10655054 publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.01101.x – volume: 17 start-page: 1157 year: 1989 ident: 6_30274602 publication-title: THE ANNALS OF STATISTICS doi: 10.1214/aos/1176347261 – volume: 84 start-page: 1074 year: 1989 ident: 12_42047175 publication-title: JOURNAL OF AMERICAN STATISTICAL ASSOCIATION doi: 10.1080/01621459.1989.10478874 – volume: 94 start-page: 297 issn: 0006-3444 issue: 2 year: 2007 ident: 17_28616851 publication-title: Biometrika doi: 10.1093/biomet/asm036 – volume: 97 start-page: 389 issn: 0006-3444 issue: 2 year: 2010 ident: 2_37315893 publication-title: Biometrika doi: 10.1093/biomet/asq012 – volume: 34 start-page: 187 year: 1972 ident: 4_24240848 publication-title: JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B doi: 10.1111/j.2517-6161.1972.tb00899.x – volume: 31 start-page: 1722 issn: 0277-6715 issue: 16 year: 2012 ident: 15_42004823 publication-title: Statistics in medicine doi: 10.1002/sim.4505 – volume: 90 start-page: 341 issn: 0006-3444 issue: 2 year: 2003 ident: 10_20302537 publication-title: Biometrika doi: 10.1093/biomet/90.2.341 – volume: 57 start-page: 1030 issn: 0006-341X issue: 4 year: 2001 ident: 3_11437790 publication-title: Biometrics doi: 10.1111/j.0006-341X.2001.01030.x – volume: 18 start-page: 354 year: 1990 ident: 19_29583457 publication-title: THE ANNALS OF STATISTICS doi: 10.1214/aos/1176347504 – volume: 58 start-page: 773 issn: 0006-341X issue: 4 year: 2002 ident: 8_17382254 publication-title: Biometrics doi: 10.1111/j.0006-341X.2002.00773.x – volume: 14 start-page: 181 year: 1987 ident: 5_47001931 publication-title: SCANDINAVIAN JOURNAL OF STATISTICS – volume: 337 start-page: 725 year: 1997 ident: 9_47001932 publication-title: NEW ENGLAND JOURNAL OF MEDICINEUNBOUND VOLUME doi: 10.1056/NEJM199709113371101 |
SSID | ssj0022363 |
Score | 2.460936 |
Snippet | For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 222 |
SubjectTerms | Biostatistics Clinical trials HIV HIV Infections - drug therapy HIV Infections - mortality Human immunodeficiency virus Humans Liver Cirrhosis, Biliary - mortality Models, Statistical Regression analysis Survival Analysis Time Factors |
Title | Predicting the restricted mean event time with the subject's baseline covariates in survival analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24292992 https://www.proquest.com/docview/1507811848 https://www.proquest.com/docview/1505256312 https://pubmed.ncbi.nlm.nih.gov/PMC3944973 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWIiQuiG8WCjISEgeUNLEdJzkiBCpFIA5b0VuUOLZYFRLUTarCH-BvM2M72aRFQLlEu47XkXdexjNjzxtCnqWZxPo3JqiFjgJhIhWUUoDjCmuf0KVOaruD__6D3D8UB0fJ0WLxc3Jqqe-qUP34bV7J_0gV2kCumCV7CcmOg0IDfAb5whUkDNd_kvHHE9xm6YaMJyyzAWoNbcivGGC35Ey2erwPt0KfTV9h5MWG6XEFs1amak_BZUarE8Mfmx7Ux6nlEHCEJbON33WLOUie3hm5Ss-G4_G-HsgktrBa-8yGcBKfbuctn7TLzw5fHITTEEQ8PbnitKaQSSCkI3IM9dCWBWCLpTNVm0wgxaZ60yUn-yWYOW6MC9rdMV9V04nC9-OzLnLktXM67XPL3Hj40G2782I2TuFGuUKuMvA3rG_-9t3ouTNuS_KN8xxyMHO-Nxtlz40yt3EuOC7nz99ODJrVTXLDeyL0pYPVLbLQzW1yzdUm_X6H6C24KACHbsFFEVzUgosiuCiCy_bx4Hq-oQO06BZadN3QAVp0gNZdcvjm9erVfuBrcgRKcNnBkh3zKmJ5BBpIpJFm3HAhhMlkZQwYexrcfRXFSle8zHKpUpmWNVO5yOokiyPD75Gdpm30A0J5EteMRaYSKgEzUpUmM5mSYHOWdSlYtSR8-BcL5QnrsW7Kl-JPElySYPzVN0fY8pf-u4OACv9qbwr0kjJwvUW2JE_H26B4cTetbHTb2z4J-As8Zkty38lzfCDDInB5DnfSmaTHDkjqPr_TrD9bcndMVM9T_vCS03hErm_fzF2y0530-jGYy131xEL5F-73y5I |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+restricted+mean+event+time+with+the+subject%27s+baseline+covariates+in+survival+analysis&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Tian%2C+L.&rft.au=Zhao%2C+L.&rft.au=Wei%2C+L.+J.&rft.date=2014-04-01&rft.issn=1465-4644&rft.eissn=1468-4357&rft.volume=15&rft.issue=2&rft.spage=222&rft.epage=233&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxt050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_biostatistics_kxt050 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon |