Predicting the restricted mean event time with the subject's baseline covariates in survival analysis

For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential ev...

Full description

Saved in:
Bibliographic Details
Published inBiostatistics (Oxford, England) Vol. 15; no. 2; pp. 222 - 233
Main Authors Tian, L., Zhao, L., Wei, L. J.
Format Journal Article
LanguageEnglish
Published England Oxford Publishing Limited (England) 01.04.2014
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For designing, monitoring, and analyzing a longitudinal study with an event time as the outcome variable, the restricted mean event time (RMET) is an easily interpretable, clinically meaningful summary of the survival function in the presence of censoring. The RMET is the average of all potential event times measured up to a time point τ and can be estimated consistently by the area under the Kaplan-Meier curve over $[0, \tau ]$. In this paper, we study a class of regression models, which directly relates the RMET to its "baseline" covariates for predicting the future subjects' RMETs. Since the standard Cox and the accelerated failure time models can also be used for estimating such RMETs, we utilize a cross-validation procedure to select the "best" among all the working models considered in the model building and evaluation process. Lastly, we draw inferences for the predicted RMETs to assess the performance of the final selected model using an independent data set or a "hold-out" sample from the original data set. All the proposals are illustrated with the data from the an HIV clinical trial conducted by the AIDS Clinical Trials Group and the primary biliary cirrhosis study conducted by the Mayo Clinic.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1465-4644
1468-4357
1468-4357
DOI:10.1093/biostatistics/kxt050