Study on heat transfer law of moving temperature variable gas in thermoacoustic plate stack

Taking gas and the heat transfer process between gas and plate as the research object, the mathematical model of heat transfer in one working cycle by moving variable temperature air mass under the action of sound field is established, which provides a new idea for understanding thermoacoustic effec...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; p. 9486
Main Authors Wang, Jianxin, Liu, Xiangbin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.04.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Taking gas and the heat transfer process between gas and plate as the research object, the mathematical model of heat transfer in one working cycle by moving variable temperature air mass under the action of sound field is established, which provides a new idea for understanding thermoacoustic effect. The influence factors in the model are analyzed and it is found that the amplitude of the air mass has a significant influence on the heat transfer, and the heat transfer of the air mass in one working cycle is proportional to the square of the amplitude. In a certain working environment, the thermoacoustic refrigerator has a critical operating frequency, and only when the operating frequency is greater than the critical frequency can refrigeration be realized. The critical operating frequency is independent of the amplitude and increases with the increase of the stack temperature gradient. With the pressure belly point as the reference position, the greater the distance from the reference position, the greater the critical operating frequency. On this basis, the idea of short plate overlapping is put forward and the formation mechanism of temperature difference between two ends of plate overlapping is explained.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-60293-2