Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications

Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of M n +1 X n ( n = 1-3), integrate the advantages of metallic conductive transition metals with large groups of carbides, nitrides, or carbonitrides. They have led to a burgeoning research interest in bio...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 47; no. 14; pp. 519 - 5124
Main Authors Huang, Kai, Li, Zhongjun, Lin, Jing, Han, Gang, Huang, Peng
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 17.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of M n +1 X n ( n = 1-3), integrate the advantages of metallic conductive transition metals with large groups of carbides, nitrides, or carbonitrides. They have led to a burgeoning research interest in biomedical applications due to their ultrathin structure and fascinating physiochemical (electronic, optical, magnetic, etc. ) properties. In this review, we summarize recent advances in biomedical applications for MXenes. We first introduce the preparation methods and surface modifications with respect to MXenes. Their unique properties are then elaborated. Thirdly, we highlight their various biomedical applications, such as with biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics. In the end, the current challenges and new opportunities for MXenes in regard to their biomedical applications are also discussed. MXenes with an ultrathin structure and fascinating physiochemical (electronic, optical, magnetic, etc. ) properties have great potential for biomedical applications, such as biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics.
AbstractList Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of M n +1 X n ( n = 1-3), integrate the advantages of metallic conductive transition metals with large groups of carbides, nitrides, or carbonitrides. They have led to a burgeoning research interest in biomedical applications due to their ultrathin structure and fascinating physiochemical (electronic, optical, magnetic, etc. ) properties. In this review, we summarize recent advances in biomedical applications for MXenes. We first introduce the preparation methods and surface modifications with respect to MXenes. Their unique properties are then elaborated. Thirdly, we highlight their various biomedical applications, such as with biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics. In the end, the current challenges and new opportunities for MXenes in regard to their biomedical applications are also discussed. MXenes with an ultrathin structure and fascinating physiochemical (electronic, optical, magnetic, etc. ) properties have great potential for biomedical applications, such as biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics.
Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of Mn+1Xn (n = 1-3), integrate the advantages of metallic conductive transition metals with large groups of carbides, nitrides, or carbonitrides. They have led to a burgeoning research interest in biomedical applications due to their ultrathin structure and fascinating physiochemical (electronic, optical, magnetic, etc.) properties. In this review, we summarize recent advances in biomedical applications for MXenes. We first introduce the preparation methods and surface modifications with respect to MXenes. Their unique properties are then elaborated. Thirdly, we highlight their various biomedical applications, such as with biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics. In the end, the current challenges and new opportunities for MXenes in regard to their biomedical applications are also discussed.Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of Mn+1Xn (n = 1-3), integrate the advantages of metallic conductive transition metals with large groups of carbides, nitrides, or carbonitrides. They have led to a burgeoning research interest in biomedical applications due to their ultrathin structure and fascinating physiochemical (electronic, optical, magnetic, etc.) properties. In this review, we summarize recent advances in biomedical applications for MXenes. We first introduce the preparation methods and surface modifications with respect to MXenes. Their unique properties are then elaborated. Thirdly, we highlight their various biomedical applications, such as with biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics. In the end, the current challenges and new opportunities for MXenes in regard to their biomedical applications are also discussed.
Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of Mₙ₊₁Xₙ (n = 1–3), integrate the advantages of metallic conductive transition metals with large groups of carbides, nitrides, or carbonitrides. They have led to a burgeoning research interest in biomedical applications due to their ultrathin structure and fascinating physiochemical (electronic, optical, magnetic, etc.) properties. In this review, we summarize recent advances in biomedical applications for MXenes. We first introduce the preparation methods and surface modifications with respect to MXenes. Their unique properties are then elaborated. Thirdly, we highlight their various biomedical applications, such as with biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics. In the end, the current challenges and new opportunities for MXenes in regard to their biomedical applications are also discussed.
Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of Mn+1Xn (n = 1–3), integrate the advantages of metallic conductive transition metals with large groups of carbides, nitrides, or carbonitrides. They have led to a burgeoning research interest in biomedical applications due to their ultrathin structure and fascinating physiochemical (electronic, optical, magnetic, etc.) properties. In this review, we summarize recent advances in biomedical applications for MXenes. We first introduce the preparation methods and surface modifications with respect to MXenes. Their unique properties are then elaborated. Thirdly, we highlight their various biomedical applications, such as with biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics. In the end, the current challenges and new opportunities for MXenes in regard to their biomedical applications are also discussed.
Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of M n+1 X n ( n = 1–3), integrate the advantages of metallic conductive transition metals with large groups of carbides, nitrides, or carbonitrides. They have led to a burgeoning research interest in biomedical applications due to their ultrathin structure and fascinating physiochemical (electronic, optical, magnetic, etc. ) properties. In this review, we summarize recent advances in biomedical applications for MXenes. We first introduce the preparation methods and surface modifications with respect to MXenes. Their unique properties are then elaborated. Thirdly, we highlight their various biomedical applications, such as with biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics. In the end, the current challenges and new opportunities for MXenes in regard to their biomedical applications are also discussed.
Author Li, Zhongjun
Lin, Jing
Han, Gang
Huang, Peng
Huang, Kai
AuthorAffiliation Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University
Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University
Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School
AuthorAffiliation_xml – sequence: 0
  name: Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University
– sequence: 0
  name: Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School
– sequence: 0
  name: Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University
Author_xml – sequence: 1
  givenname: Kai
  surname: Huang
  fullname: Huang, Kai
– sequence: 2
  givenname: Zhongjun
  surname: Li
  fullname: Li, Zhongjun
– sequence: 3
  givenname: Jing
  surname: Lin
  fullname: Lin, Jing
– sequence: 4
  givenname: Gang
  surname: Han
  fullname: Han, Gang
– sequence: 5
  givenname: Peng
  surname: Huang
  fullname: Huang, Peng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29667670$$D View this record in MEDLINE/PubMed
BookMark eNqF0ktLxDAQB_AgirurXrwrBS-rUJ2mzaNHWZ-w4kEFwUNJ84AsbbMmXcRvb3bXB4jgKZPwmzn8JyO02blOI7SfwWkGeXkmmQwAPOdqAw2zgkJasKLYREPIgaYAGR6gUQizWGWM4m00wCWljDIYopfHN5cq2-ouWNeJJum9iGUfL0mr-_ggha-t0iERnUo62_vVZXz3rDsdjhPjfFJb12plZdRiPm9isewPu2jLiCbovc9zBz1dXT5ObtLp_fXt5HyayiKnfZqZIieCUCw1ZwI4Z1mtipooWShMuSYlUUQbw4zUhCoqjaGMCQxSCskEyXfQeD137t3rQoe-am2QumlEp90iVBhjKEvKGf2fAmZAOSd5pEe_6MwtfIxoqRhwzEjJozr8VIs6ZlDNvW2Ff6--Eo4A1kB6F4LXppK2X-UTk7ZNlUG1XGI1YZOH1RIvYsvJr5avqX_igzX2QX67nx-RfwCqiaXe
CitedBy_id crossref_primary_10_1002_sstr_202100120
crossref_primary_10_1039_D2NR05447G
crossref_primary_10_1088_2053_1583_ac52b3
crossref_primary_10_1088_2053_1583_ab6a60
crossref_primary_10_1016_j_mattod_2021_02_010
crossref_primary_10_1039_D1MA00625H
crossref_primary_10_3390_molecules28124617
crossref_primary_10_1021_acs_nanolett_2c01914
crossref_primary_10_1016_j_cej_2023_145700
crossref_primary_10_1016_j_measurement_2022_110782
crossref_primary_10_1016_j_xcrp_2021_100536
crossref_primary_10_2174_1573413719666230120103335
crossref_primary_10_1002_adma_201906697
crossref_primary_10_1021_acsinfecdis_4c00860
crossref_primary_10_3390_nano12111907
crossref_primary_10_1021_acs_chemmater_9b00414
crossref_primary_10_3389_fbioe_2019_00320
crossref_primary_10_1021_acsami_4c13973
crossref_primary_10_3390_chemistry3040095
crossref_primary_10_1016_j_jiec_2025_02_020
crossref_primary_10_1016_j_apsusc_2023_156562
crossref_primary_10_1186_s13036_023_00355_7
crossref_primary_10_1016_j_carbon_2024_119412
crossref_primary_10_1039_D0CP04886K
crossref_primary_10_1016_j_ccr_2022_214965
crossref_primary_10_1016_j_ijhydene_2023_03_031
crossref_primary_10_1016_j_ceramint_2019_06_114
crossref_primary_10_1016_j_greenca_2025_01_001
crossref_primary_10_1088_1674_4926_42_5_051001
crossref_primary_10_1186_s12938_021_00873_9
crossref_primary_10_1016_j_jallcom_2019_153242
crossref_primary_10_1002_cphc_201900551
crossref_primary_10_1016_j_surfin_2022_102493
crossref_primary_10_3389_fchem_2020_565940
crossref_primary_10_1002_adma_202003154
crossref_primary_10_1002_slct_202300737
crossref_primary_10_1021_acsami_3c04582
crossref_primary_10_1039_D1TB02759J
crossref_primary_10_1016_j_mtcomm_2023_105529
crossref_primary_10_1039_C9SC03049B
crossref_primary_10_1002_pc_27270
crossref_primary_10_1016_j_tifs_2024_104635
crossref_primary_10_1002_admi_202202172
crossref_primary_10_1021_acsnano_9b07708
crossref_primary_10_1016_j_ceramint_2024_03_285
crossref_primary_10_1016_j_bioactmat_2024_05_023
crossref_primary_10_1016_j_ssc_2022_114893
crossref_primary_10_3390_polym14163433
crossref_primary_10_1016_j_cej_2023_142409
crossref_primary_10_1021_acs_inorgchem_9b00329
crossref_primary_10_1039_D1MH00986A
crossref_primary_10_1021_acsenergylett_3c00340
crossref_primary_10_3390_ijms20225776
crossref_primary_10_1016_j_apcatb_2023_123585
crossref_primary_10_1039_D2LC01008A
crossref_primary_10_1186_s12951_022_01428_3
crossref_primary_10_1016_j_cej_2023_141303
crossref_primary_10_1016_j_snb_2020_127735
crossref_primary_10_3390_nano9081139
crossref_primary_10_1039_D2NA00623E
crossref_primary_10_1016_j_est_2024_111420
crossref_primary_10_1007_s40820_020_0411_9
crossref_primary_10_1039_C9TC04187G
crossref_primary_10_1016_j_snb_2022_133103
crossref_primary_10_1002_aelm_201901382
crossref_primary_10_3390_s20185434
crossref_primary_10_2174_2210681213666230911161526
crossref_primary_10_1016_j_aca_2024_343069
crossref_primary_10_1016_j_physb_2024_416154
crossref_primary_10_1016_j_compositesa_2022_107362
crossref_primary_10_1016_j_jmrt_2024_04_233
crossref_primary_10_1016_j_addr_2022_114178
crossref_primary_10_1039_C9NR01220F
crossref_primary_10_1002_cctc_202100204
crossref_primary_10_1002_adom_202300340
crossref_primary_10_1016_j_mtcomm_2024_108024
crossref_primary_10_1016_j_cej_2020_128348
crossref_primary_10_1016_j_bioelechem_2020_107674
crossref_primary_10_1016_j_jece_2023_110052
crossref_primary_10_3389_fbioe_2023_1154301
crossref_primary_10_1039_D3RA01276J
crossref_primary_10_34133_bmr_0143
crossref_primary_10_1016_j_actbio_2022_10_005
crossref_primary_10_1021_acsnano_0c06287
crossref_primary_10_1039_D0NR05287F
crossref_primary_10_1016_j_jece_2024_112316
crossref_primary_10_1080_10408436_2022_2150124
crossref_primary_10_1007_s40820_023_01074_w
crossref_primary_10_1002_adfm_202007584
crossref_primary_10_1002_adfm_202000712
crossref_primary_10_1021_acsnano_1c04526
crossref_primary_10_1021_acs_jpcc_9b00715
crossref_primary_10_1149_1945_7111_ad26e2
crossref_primary_10_1002_adfm_201807326
crossref_primary_10_1002_admt_202101623
crossref_primary_10_1007_s10853_023_08337_2
crossref_primary_10_1039_D0TB00251H
crossref_primary_10_3390_nano13060958
crossref_primary_10_1016_j_vacuum_2024_113730
crossref_primary_10_3390_ph17070950
crossref_primary_10_3390_s21144938
crossref_primary_10_1021_acsanm_4c02832
crossref_primary_10_1016_j_eurpolymj_2024_113180
crossref_primary_10_1021_acs_jpcc_2c00098
crossref_primary_10_3390_nano13050919
crossref_primary_10_1007_s10895_022_03012_2
crossref_primary_10_1002_smll_202207249
crossref_primary_10_1021_acs_nanolett_2c03260
crossref_primary_10_1021_acs_langmuir_0c02521
crossref_primary_10_1007_s40820_022_00880_y
crossref_primary_10_1016_j_procbio_2023_06_022
crossref_primary_10_1021_acssensors_0c01961
crossref_primary_10_1016_j_nanoen_2019_03_020
crossref_primary_10_2139_ssrn_4180190
crossref_primary_10_1002_ange_201913095
crossref_primary_10_1515_nanoph_2019_0418
crossref_primary_10_1016_j_cej_2021_129296
crossref_primary_10_3390_biomimetics7040222
crossref_primary_10_1002_smll_202007113
crossref_primary_10_1016_j_jconrel_2019_02_015
crossref_primary_10_1039_D1MA00189B
crossref_primary_10_1039_D3EN00827D
crossref_primary_10_1016_j_cej_2020_124312
crossref_primary_10_1088_1361_6463_ad9593
crossref_primary_10_1002_admt_202001197
crossref_primary_10_3390_nano11123412
crossref_primary_10_1088_2515_7639_ab8f78
crossref_primary_10_1016_j_biomaterials_2020_119827
crossref_primary_10_1126_sciadv_aay6825
crossref_primary_10_1016_j_apsusc_2020_148241
crossref_primary_10_1016_j_susmat_2022_e00462
crossref_primary_10_1039_D3MA00362K
crossref_primary_10_1016_j_addr_2021_114031
crossref_primary_10_3390_molecules26144301
crossref_primary_10_1021_acsami_0c03181
crossref_primary_10_1016_j_nwnano_2025_100073
crossref_primary_10_1002_smll_202310483
crossref_primary_10_1016_j_bioactmat_2021_06_021
crossref_primary_10_1002_admt_202001189
crossref_primary_10_1002_aelm_202400143
crossref_primary_10_1039_D0TB00566E
crossref_primary_10_1016_j_bios_2020_112730
crossref_primary_10_1016_j_jelechem_2022_117012
crossref_primary_10_1016_j_biomaterials_2024_122548
crossref_primary_10_1016_j_cej_2020_124340
crossref_primary_10_1039_C9TA01850F
crossref_primary_10_1016_j_susmat_2022_e00439
crossref_primary_10_1016_j_aca_2022_340494
crossref_primary_10_1016_j_nantod_2019_02_008
crossref_primary_10_1002_advs_202101043
crossref_primary_10_1039_D0NR02581J
crossref_primary_10_1016_j_cej_2020_125428
crossref_primary_10_3390_bios12050332
crossref_primary_10_1016_j_apmt_2020_100574
crossref_primary_10_1021_acs_jpcc_9b04713
crossref_primary_10_1002_adhm_202000872
crossref_primary_10_1016_j_compositesb_2024_112086
crossref_primary_10_1007_s12274_022_5313_3
crossref_primary_10_1007_s40820_022_00958_7
crossref_primary_10_1021_acs_chemmater_1c03166
crossref_primary_10_1016_j_optmat_2024_115824
crossref_primary_10_1016_j_trac_2020_115983
crossref_primary_10_1007_s10854_023_11695_x
crossref_primary_10_1016_j_ceramint_2022_05_137
crossref_primary_10_1002_aenm_202202860
crossref_primary_10_1016_j_saa_2020_118336
crossref_primary_10_1016_j_jcis_2021_01_063
crossref_primary_10_1038_s41596_024_00969_1
crossref_primary_10_1016_j_jpowsour_2020_229276
crossref_primary_10_1016_j_biomaterials_2024_122523
crossref_primary_10_1039_D2NR06625D
crossref_primary_10_1039_D0TA01798A
crossref_primary_10_1039_D2MA00151A
crossref_primary_10_1016_j_envres_2023_115337
crossref_primary_10_1039_D2TB01503J
crossref_primary_10_1007_s00604_019_4049_6
crossref_primary_10_1007_s12274_021_3991_x
crossref_primary_10_1039_D3TA06548K
crossref_primary_10_1016_j_apsusc_2022_152934
crossref_primary_10_1021_acsomega_0c03970
crossref_primary_10_1016_j_apmt_2024_102215
crossref_primary_10_2139_ssrn_4115329
crossref_primary_10_1016_j_gee_2020_11_008
crossref_primary_10_1016_j_seppur_2022_120641
crossref_primary_10_1002_advs_202101498
crossref_primary_10_1142_S1793545820300104
crossref_primary_10_1016_j_apsusc_2022_156299
crossref_primary_10_1021_acsanm_4c05026
crossref_primary_10_2174_1872212118666230823113826
crossref_primary_10_1002_adfm_202108495
crossref_primary_10_1016_j_jhazmat_2024_134002
crossref_primary_10_1016_j_jallcom_2020_158547
crossref_primary_10_1039_D2TA03481F
crossref_primary_10_1016_j_ceramint_2021_02_226
crossref_primary_10_1021_acsami_0c09921
crossref_primary_10_1016_j_est_2022_104711
crossref_primary_10_1016_j_ijbiomac_2021_04_164
crossref_primary_10_1016_j_surfin_2024_104169
crossref_primary_10_1007_s12274_023_5527_z
crossref_primary_10_1002_smll_202006054
crossref_primary_10_1021_acsnano_1c01890
crossref_primary_10_1016_j_jhazmat_2020_122423
crossref_primary_10_1149_2_0142003JES
crossref_primary_10_1016_j_cossms_2019_06_004
crossref_primary_10_1016_j_smaim_2024_10_002
crossref_primary_10_1007_s00132_024_04520_8
crossref_primary_10_1016_j_envres_2022_113071
crossref_primary_10_1039_D1NJ00344E
crossref_primary_10_1109_JSEN_2022_3154385
crossref_primary_10_3389_fmats_2021_633079
crossref_primary_10_1002_anbr_202200067
crossref_primary_10_1016_j_nantod_2021_101136
crossref_primary_10_1039_D4TB01904K
crossref_primary_10_1016_j_electacta_2019_06_045
crossref_primary_10_3390_cancers15010146
crossref_primary_10_3390_pharmaceutics14061217
crossref_primary_10_1039_C9SC00324J
crossref_primary_10_1002_app_52029
crossref_primary_10_1021_acs_energyfuels_1c00958
crossref_primary_10_1021_acs_chemrev_3c00302
crossref_primary_10_1021_acsanm_2c05140
crossref_primary_10_1021_acsanm_9b00286
crossref_primary_10_1002_smll_202201300
crossref_primary_10_1016_j_jmmm_2022_169895
crossref_primary_10_1007_s40843_020_1387_7
crossref_primary_10_1177_09540083221123476
crossref_primary_10_1016_j_actbio_2020_08_010
crossref_primary_10_1016_j_ccr_2020_213514
crossref_primary_10_3390_polym15204067
crossref_primary_10_1002_adfm_202105043
crossref_primary_10_1002_nano_202000309
crossref_primary_10_1016_j_scitotenv_2024_173755
crossref_primary_10_1063_5_0064529
crossref_primary_10_1002_adfm_202104199
crossref_primary_10_1016_j_pmatsci_2020_100733
crossref_primary_10_1002_eem2_12058
crossref_primary_10_1016_j_ceramint_2023_03_109
crossref_primary_10_1016_j_seppur_2021_119722
crossref_primary_10_1016_j_ccr_2021_213806
crossref_primary_10_1016_j_cej_2022_138228
crossref_primary_10_1002_adma_202412000
crossref_primary_10_1016_j_matdes_2020_109091
crossref_primary_10_1016_j_jphotochem_2022_113792
crossref_primary_10_1002_smll_202100946
crossref_primary_10_1016_j_biomaterials_2022_121507
crossref_primary_10_1016_j_physb_2022_413922
crossref_primary_10_1039_D0TA01552K
crossref_primary_10_1016_j_bioactmat_2021_12_011
crossref_primary_10_3390_bios12070454
crossref_primary_10_1021_acsnano_1c08239
crossref_primary_10_1021_acsnano_2c12270
crossref_primary_10_1016_j_flatc_2023_100470
crossref_primary_10_1021_acsmaterialslett_3c00965
crossref_primary_10_1039_D1TB02277F
crossref_primary_10_1002_adhm_202100970
crossref_primary_10_3390_ma14040829
crossref_primary_10_1016_j_ccr_2022_215002
crossref_primary_10_1007_s12209_021_00282_y
crossref_primary_10_1021_acsami_2c20543
crossref_primary_10_1039_D4MA00234B
crossref_primary_10_1016_j_aca_2020_08_063
crossref_primary_10_1016_j_saa_2023_123019
crossref_primary_10_1016_j_chemosphere_2024_141955
crossref_primary_10_1016_j_mtchem_2022_101235
crossref_primary_10_1016_j_jhazmat_2022_128750
crossref_primary_10_1021_acs_langmuir_3c04045
crossref_primary_10_1016_j_biomaterials_2019_119684
crossref_primary_10_1021_acsaem_3c02852
crossref_primary_10_1039_D1TC03610F
crossref_primary_10_1021_acsami_0c09310
crossref_primary_10_1016_j_commatsci_2024_112947
crossref_primary_10_1021_acsomega_2c02441
crossref_primary_10_1016_j_apsusc_2024_160765
crossref_primary_10_1002_adhm_202202208
crossref_primary_10_1016_j_desal_2024_117837
crossref_primary_10_1016_j_inoche_2024_113214
crossref_primary_10_1016_j_jelechem_2023_117389
crossref_primary_10_1016_j_est_2021_102322
crossref_primary_10_1002_adfm_202104149
crossref_primary_10_1002_adma_201902333
crossref_primary_10_1016_j_eurpolymj_2024_113512
crossref_primary_10_1016_j_jenvman_2022_116387
crossref_primary_10_1002_eem2_12023
crossref_primary_10_1002_smll_202201740
crossref_primary_10_1016_j_jallcom_2021_163039
crossref_primary_10_1021_acsami_0c11824
crossref_primary_10_1016_j_pmatsci_2023_101220
crossref_primary_10_1002_smll_202201989
crossref_primary_10_1088_1361_648X_ac9f93
crossref_primary_10_1002_solr_201900400
crossref_primary_10_1021_acs_nanolett_1c01986
crossref_primary_10_1021_acs_iecr_8b05416
crossref_primary_10_1002_EXP_20230163
crossref_primary_10_1039_C9TB02060H
crossref_primary_10_1002_celc_202200103
crossref_primary_10_1007_s00604_019_4000_x
crossref_primary_10_1007_s10854_022_08912_4
crossref_primary_10_1039_D0AN01489C
crossref_primary_10_1016_j_cej_2020_124519
crossref_primary_10_1002_cey2_200
crossref_primary_10_1016_j_cej_2021_132663
crossref_primary_10_1016_j_jallcom_2021_158913
crossref_primary_10_1016_j_ccr_2020_213549
crossref_primary_10_1039_D4MH01056F
crossref_primary_10_1039_D3CP00600J
crossref_primary_10_1039_D2EN00527A
crossref_primary_10_3390_ma13102347
crossref_primary_10_1039_D0TB02085K
crossref_primary_10_2139_ssrn_4016998
crossref_primary_10_1016_j_cplett_2025_141931
crossref_primary_10_1021_acsanm_1c00219
crossref_primary_10_1002_adma_202205154
crossref_primary_10_1016_j_mtcomm_2024_109929
crossref_primary_10_1002_cnma_202000448
crossref_primary_10_1002_adfm_202406529
crossref_primary_10_1002_smtd_202101599
crossref_primary_10_1016_j_memsci_2024_123322
crossref_primary_10_1002_adsu_202400011
crossref_primary_10_1016_j_flatc_2024_100719
crossref_primary_10_3390_ma17225513
crossref_primary_10_1016_j_mtcomm_2023_106136
crossref_primary_10_1002_smll_201901190
crossref_primary_10_1016_j_gee_2024_09_002
crossref_primary_10_1016_j_apsadv_2025_100713
crossref_primary_10_1021_acsanm_4c05792
crossref_primary_10_1016_j_rser_2021_110878
crossref_primary_10_1134_S0040579522040042
crossref_primary_10_1016_j_talanta_2024_126485
crossref_primary_10_1515_nanoph_2021_0205
crossref_primary_10_1039_D1BM00526J
crossref_primary_10_1177_15330338221142996
crossref_primary_10_1007_s40820_020_00504_3
crossref_primary_10_1002_pat_6346
crossref_primary_10_1016_j_est_2021_102993
crossref_primary_10_1002_smll_201805339
crossref_primary_10_1063_5_0026093
crossref_primary_10_1002_adhm_202101439
crossref_primary_10_1016_j_apsusc_2022_154124
crossref_primary_10_1016_j_matt_2020_10_024
crossref_primary_10_1002_smll_202401603
crossref_primary_10_1016_j_surfin_2024_104628
crossref_primary_10_3389_fchem_2020_00297
crossref_primary_10_3390_mi13091383
crossref_primary_10_1016_j_ijhydene_2020_11_278
crossref_primary_10_1016_j_bioadv_2022_213055
crossref_primary_10_1016_j_jallcom_2020_155985
crossref_primary_10_1021_acsbiomaterials_9b01894
crossref_primary_10_1016_j_snb_2019_03_052
crossref_primary_10_1039_D3TB02306K
crossref_primary_10_1016_j_cclet_2019_11_016
crossref_primary_10_1016_j_cclet_2023_108180
crossref_primary_10_3390_s22239358
crossref_primary_10_1002_adfm_202106786
crossref_primary_10_1016_j_jece_2024_114812
crossref_primary_10_1002_smll_201906814
crossref_primary_10_1016_j_microc_2024_112068
crossref_primary_10_1016_j_est_2021_103824
crossref_primary_10_1007_s00289_023_05099_4
crossref_primary_10_1039_D1SE01681D
crossref_primary_10_1016_j_mseb_2022_115798
crossref_primary_10_3390_molecules29225233
crossref_primary_10_1016_j_snb_2020_128259
crossref_primary_10_1016_j_apmt_2022_101584
crossref_primary_10_1016_j_ceramint_2019_12_257
crossref_primary_10_1039_D3NR03005A
crossref_primary_10_1016_j_microc_2022_108216
crossref_primary_10_1016_j_pmatsci_2021_100887
crossref_primary_10_1016_j_mtener_2020_100521
crossref_primary_10_1002_celc_202400008
crossref_primary_10_1039_D3BM01114C
crossref_primary_10_1016_j_mtphys_2021_100527
crossref_primary_10_1016_j_scs_2021_103046
crossref_primary_10_1016_j_nantod_2024_102202
crossref_primary_10_1016_j_cej_2024_155154
crossref_primary_10_1016_j_cclet_2024_109527
crossref_primary_10_1016_j_jallcom_2022_168162
crossref_primary_10_1080_15583724_2020_1729179
crossref_primary_10_1016_j_rio_2023_100438
crossref_primary_10_1016_j_cej_2020_127192
crossref_primary_10_1021_acs_jpcc_0c01039
crossref_primary_10_3390_molecules30030479
crossref_primary_10_1021_acsestengg_0c00174
crossref_primary_10_1016_j_cclet_2019_11_031
crossref_primary_10_1021_acs_chemmater_4c00966
crossref_primary_10_1016_j_nanoso_2021_100820
crossref_primary_10_1002_smtd_202401324
crossref_primary_10_1021_acsnano_1c06402
crossref_primary_10_1016_j_cej_2023_141928
crossref_primary_10_1002_qua_27094
crossref_primary_10_1016_j_jiec_2022_02_006
crossref_primary_10_1021_acsanm_0c02463
crossref_primary_10_1016_j_matdes_2023_112231
crossref_primary_10_1140_epjd_s10053_020_00020_4
crossref_primary_10_1002_smll_202305250
crossref_primary_10_1016_j_ccr_2023_215565
crossref_primary_10_1002_cey2_609
crossref_primary_10_1002_adma_202002661
crossref_primary_10_3390_nano14131088
crossref_primary_10_1002_adfm_202300299
crossref_primary_10_1016_j_materresbull_2024_112954
crossref_primary_10_1002_wnan_1925
crossref_primary_10_1021_acs_nanolett_3c01784
crossref_primary_10_3389_fsens_2022_1006749
crossref_primary_10_1021_acs_accounts_9b00064
crossref_primary_10_1149_1945_7111_ac59f5
crossref_primary_10_1039_D0NR01444C
crossref_primary_10_1002_adfm_202008171
crossref_primary_10_1016_j_carbon_2022_11_033
crossref_primary_10_1016_j_cej_2023_141913
crossref_primary_10_2139_ssrn_4007870
crossref_primary_10_1016_j_ijbiomac_2025_140613
crossref_primary_10_1021_acsami_2c10551
crossref_primary_10_1002_slct_202203288
crossref_primary_10_1016_j_est_2023_107975
crossref_primary_10_1016_j_jiec_2019_12_003
crossref_primary_10_1016_j_aca_2022_339990
crossref_primary_10_1016_j_mtener_2021_100864
crossref_primary_10_1039_D1AN00178G
crossref_primary_10_1016_j_solmat_2021_111558
crossref_primary_10_1039_D3GC01822A
crossref_primary_10_1021_acs_langmuir_3c03607
crossref_primary_10_1016_j_ccr_2024_216355
crossref_primary_10_1016_j_jece_2024_113546
crossref_primary_10_1088_1361_6528_ab5609
crossref_primary_10_1039_D1NJ00244A
crossref_primary_10_1016_j_addr_2022_114268
crossref_primary_10_1016_j_pmatsci_2022_100976
crossref_primary_10_1063_5_0033241
crossref_primary_10_1186_s12951_023_01809_2
crossref_primary_10_1002_adma_201805875
crossref_primary_10_1039_D2NR02807G
crossref_primary_10_1186_s12951_022_01712_2
crossref_primary_10_1021_acsanm_3c04491
crossref_primary_10_1016_j_mtadv_2022_100339
crossref_primary_10_1021_acsnano_1c04423
crossref_primary_10_1002_aelm_201901064
crossref_primary_10_1002_smll_202311869
crossref_primary_10_1016_j_msec_2019_110000
crossref_primary_10_1002_aenm_202202303
crossref_primary_10_3390_diagnostics13040697
crossref_primary_10_1002_adhm_202102367
crossref_primary_10_1016_j_mattod_2025_02_004
crossref_primary_10_1038_s44222_023_00042_8
crossref_primary_10_3389_fimmu_2023_1241791
crossref_primary_10_1088_2053_1591_ac5076
crossref_primary_10_1021_acsnano_8b09327
crossref_primary_10_1002_adma_201804779
crossref_primary_10_1021_acsanm_4c00316
crossref_primary_10_1021_acs_nanolett_2c00930
crossref_primary_10_3390_catal10050495
crossref_primary_10_1016_j_chemosphere_2021_132923
crossref_primary_10_1016_j_cej_2020_126009
crossref_primary_10_1002_advs_202406324
crossref_primary_10_1016_j_matlet_2021_129355
crossref_primary_10_1016_j_mtnano_2022_100283
crossref_primary_10_1039_D4TC02819H
crossref_primary_10_1149_1945_7111_ac2fc6
crossref_primary_10_3390_biomimetics5020024
crossref_primary_10_2139_ssrn_3992606
crossref_primary_10_1002_adhm_201900132
crossref_primary_10_1021_acsabm_1c00008
crossref_primary_10_1002_adfm_202315178
crossref_primary_10_1002_tcr_202200097
crossref_primary_10_1016_j_actbio_2020_12_035
crossref_primary_10_1111_jace_19939
crossref_primary_10_1039_D0CS00461H
crossref_primary_10_1021_acsami_3c19308
crossref_primary_10_1039_D4TC04570J
crossref_primary_10_1016_j_biomaterials_2020_120587
crossref_primary_10_1016_j_ceramint_2021_05_136
crossref_primary_10_1016_j_mattod_2019_05_017
crossref_primary_10_1002_adfm_202110267
crossref_primary_10_1002_adhm_202203028
crossref_primary_10_1016_j_ceramint_2023_01_097
crossref_primary_10_1021_acs_chemmater_4c02989
crossref_primary_10_1039_D1BM00378J
crossref_primary_10_1002_advs_201902236
crossref_primary_10_1016_j_ceramint_2019_08_071
crossref_primary_10_1039_C9NR00168A
crossref_primary_10_1002_anie_201913095
crossref_primary_10_1007_s40820_024_01418_0
crossref_primary_10_1016_j_diamond_2023_110201
crossref_primary_10_1016_j_cej_2023_142732
crossref_primary_10_1002_adfm_202104607
crossref_primary_10_3390_bios12090743
crossref_primary_10_3390_nano12071068
crossref_primary_10_1002_cbic_202000089
crossref_primary_10_1038_s41570_022_00384_8
crossref_primary_10_1016_j_foodchem_2024_141776
crossref_primary_10_1002_adma_201803432
crossref_primary_10_1557_s43578_021_00258_7
crossref_primary_10_1039_C8CS00618K
crossref_primary_10_3390_molecules26216404
crossref_primary_10_1002_adfm_202100015
crossref_primary_10_1016_j_talanta_2021_122219
crossref_primary_10_1002_ppsc_202100159
crossref_primary_10_1021_acs_nanolett_8b04065
crossref_primary_10_1002_smtd_202201440
crossref_primary_10_3389_fchem_2024_1378985
crossref_primary_10_3390_en16041977
crossref_primary_10_1002_adhm_202001007
crossref_primary_10_1016_j_cej_2021_131914
crossref_primary_10_1021_acs_iecr_2c02042
crossref_primary_10_1016_j_msec_2020_110790
crossref_primary_10_1016_j_apmt_2023_102002
crossref_primary_10_1016_j_apsusc_2023_158454
crossref_primary_10_1021_acsami_4c23014
crossref_primary_10_1016_j_physe_2019_113559
crossref_primary_10_1021_acsnano_2c10103
crossref_primary_10_1039_D3MH01362F
crossref_primary_10_1016_j_elecom_2020_106811
crossref_primary_10_1002_lpor_202200733
crossref_primary_10_1016_j_addr_2022_114422
crossref_primary_10_1021_accountsmr_2c00025
crossref_primary_10_1016_j_desal_2022_116314
crossref_primary_10_1021_acs_biomac_0c00147
crossref_primary_10_1002_chem_202000383
crossref_primary_10_1016_j_diamond_2023_109883
crossref_primary_10_1021_acs_chas_1c00051
crossref_primary_10_1016_j_matdes_2023_111867
crossref_primary_10_3390_bios13050542
crossref_primary_10_1016_j_jmat_2023_08_011
crossref_primary_10_1021_acsanm_9b01889
crossref_primary_10_3390_s22155589
crossref_primary_10_1002_anbr_202200123
crossref_primary_10_1016_j_molstruc_2024_139216
crossref_primary_10_2139_ssrn_4163721
crossref_primary_10_1039_D2NH00556E
crossref_primary_10_1039_D1TC00327E
crossref_primary_10_1016_j_saa_2025_126055
crossref_primary_10_1016_j_jmbbm_2024_106540
crossref_primary_10_1002_smtd_202300197
crossref_primary_10_1016_j_jmat_2023_08_003
crossref_primary_10_1186_s12951_023_02283_6
crossref_primary_10_1515_nanoph_2019_0550
crossref_primary_10_1016_j_carbon_2020_11_024
crossref_primary_10_1016_j_photonics_2020_100863
crossref_primary_10_1016_j_pdpdt_2022_102716
crossref_primary_10_1016_j_jmst_2023_12_010
crossref_primary_10_1039_D0BM01569E
crossref_primary_10_1016_j_jallcom_2023_171007
crossref_primary_10_1021_acs_chemrev_2c00627
crossref_primary_10_1002_adfm_202312753
crossref_primary_10_1016_j_jece_2021_105028
crossref_primary_10_1016_j_cej_2022_141121
crossref_primary_10_1039_C9MH01139K
crossref_primary_10_1002_eom2_12485
crossref_primary_10_1016_j_cej_2020_125786
crossref_primary_10_1039_D4CC00694A
crossref_primary_10_1016_j_bioactmat_2022_08_025
crossref_primary_10_1002_cctc_202401355
crossref_primary_10_1039_D3BM00841J
crossref_primary_10_1007_s11426_022_1376_1
crossref_primary_10_1021_acs_chemrev_4c00565
crossref_primary_10_1016_j_cej_2022_140288
crossref_primary_10_1021_acs_chemrestox_2c00154
crossref_primary_10_1016_j_cej_2023_142351
crossref_primary_10_1016_j_snb_2024_136215
crossref_primary_10_1039_D0CS00150C
crossref_primary_10_1016_j_procbio_2024_11_015
crossref_primary_10_1016_j_vacuum_2021_110740
crossref_primary_10_1016_j_jechem_2020_02_032
crossref_primary_10_1038_s41467_019_10631_0
crossref_primary_10_1016_j_cplett_2024_141233
crossref_primary_10_1016_j_nanoso_2024_101193
crossref_primary_10_1016_j_cej_2021_132392
crossref_primary_10_1016_j_measurement_2021_110575
crossref_primary_10_1039_D1NR04008A
crossref_primary_10_1002_adfm_202005223
crossref_primary_10_54033_cadpedv21n6_271
crossref_primary_10_3390_ijms23147909
crossref_primary_10_1088_2053_1583_ac9e68
crossref_primary_10_3390_bios10110185
crossref_primary_10_1002_adma_201903013
crossref_primary_10_1016_j_molliq_2023_123787
crossref_primary_10_3390_nano10071372
crossref_primary_10_1039_D3NA00187C
crossref_primary_10_1002_wnan_1596
crossref_primary_10_1016_j_physe_2020_114328
crossref_primary_10_1002_adma_202305183
crossref_primary_10_1016_j_jece_2022_108663
crossref_primary_10_1002_cjoc_202000453
crossref_primary_10_1016_j_flatc_2025_100849
crossref_primary_10_1016_j_est_2023_108004
crossref_primary_10_1021_acsami_2c17729
crossref_primary_10_1021_acs_analchem_9b02040
crossref_primary_10_1002_anie_201916748
crossref_primary_10_1002_smm2_1207
crossref_primary_10_1002_advs_202406521
crossref_primary_10_1016_j_apsusc_2019_143889
crossref_primary_10_1039_D1CP02116H
crossref_primary_10_1007_s10854_019_02682_2
crossref_primary_10_1016_j_ijbiomac_2024_137839
crossref_primary_10_1039_D1MA01199E
crossref_primary_10_1016_j_triboint_2022_107500
crossref_primary_10_1016_j_cclet_2024_110195
crossref_primary_10_1007_s10800_021_01593_7
crossref_primary_10_1016_j_apmt_2024_102310
crossref_primary_10_1039_C9NR07886J
crossref_primary_10_1039_D4CS00413B
crossref_primary_10_1016_j_physrep_2019_12_006
crossref_primary_10_1016_j_jcis_2024_03_108
crossref_primary_10_1021_acs_energyfuels_1c01923
crossref_primary_10_1021_acsnano_2c12759
crossref_primary_10_1021_acs_est_3c02397
crossref_primary_10_1039_D1TB00410G
crossref_primary_10_1021_acs_analchem_8b05343
crossref_primary_10_1039_D3TA04792J
crossref_primary_10_2147_IJN_S444319
crossref_primary_10_1016_j_rinma_2021_100247
crossref_primary_10_1016_j_nantod_2022_101701
crossref_primary_10_1071_CH21216
crossref_primary_10_1016_j_mtcomm_2023_107368
crossref_primary_10_1002_adfm_202303668
crossref_primary_10_1016_j_inoche_2024_112457
crossref_primary_10_1039_D2NR01542K
crossref_primary_10_26599_NR_2025_94907228
crossref_primary_10_1021_acs_iecr_3c02048
crossref_primary_10_1016_j_jallcom_2024_175172
crossref_primary_10_1016_j_ceramint_2022_03_165
crossref_primary_10_1557_s43577_023_00507_6
crossref_primary_10_1021_acsami_9b15774
crossref_primary_10_1016_j_aca_2019_12_069
crossref_primary_10_1021_acsomega_2c06704
crossref_primary_10_1021_acssuschemeng_0c01609
crossref_primary_10_1039_D0NR05214K
crossref_primary_10_1039_D1CP04359E
crossref_primary_10_1002_adma_202310320
crossref_primary_10_1016_j_est_2024_114067
crossref_primary_10_2139_ssrn_3906943
crossref_primary_10_1002_adfm_202101804
crossref_primary_10_1039_D3NA00744H
crossref_primary_10_1039_D2TA01140A
crossref_primary_10_1016_j_msec_2020_111367
crossref_primary_10_1021_acsanm_0c02945
crossref_primary_10_1021_acs_jpcc_1c03574
crossref_primary_10_1016_j_cej_2018_11_051
crossref_primary_10_1021_acsanm_3c01214
crossref_primary_10_1007_s11705_020_1997_7
crossref_primary_10_3390_chemosensors8040102
crossref_primary_10_1016_j_ccr_2019_213041
crossref_primary_10_1002_smll_202300283
crossref_primary_10_1002_smll_202305730
crossref_primary_10_1016_j_flatc_2023_100594
crossref_primary_10_1016_j_microc_2024_111495
crossref_primary_10_1007_s12274_020_3093_1
crossref_primary_10_1021_acsbiomaterials_3c01328
crossref_primary_10_1088_2515_7655_abf8f7
crossref_primary_10_1039_D0TC03410J
crossref_primary_10_1002_adhm_201801137
crossref_primary_10_1016_j_porgcoat_2023_107779
crossref_primary_10_1002_open_202300313
crossref_primary_10_1002_adom_201900978
crossref_primary_10_1149_1945_7111_ad2d1a
crossref_primary_10_1039_D1NR02224E
crossref_primary_10_1016_j_jhazmat_2020_123562
crossref_primary_10_1016_j_jlumin_2023_119815
crossref_primary_10_1021_acssuschemeng_1c07715
crossref_primary_10_1039_D1TA04134G
crossref_primary_10_1016_j_matdes_2021_109452
crossref_primary_10_1021_acs_analchem_9b03634
crossref_primary_10_1021_acsami_3c03991
crossref_primary_10_1039_C9NA00632J
crossref_primary_10_1007_s41061_023_00420_1
crossref_primary_10_1021_acsanm_1c02783
crossref_primary_10_1021_jacs_4c11111
crossref_primary_10_1177_24723444241295415
crossref_primary_10_1039_C8CS00324F
crossref_primary_10_1039_D4NA00931B
crossref_primary_10_1002_bmm2_12066
crossref_primary_10_1016_j_est_2023_107448
crossref_primary_10_1016_j_molliq_2023_121768
crossref_primary_10_3390_bios11030059
crossref_primary_10_1021_acsnano_0c01005
crossref_primary_10_1016_j_compositesb_2024_111922
crossref_primary_10_1021_acsnano_3c01913
crossref_primary_10_1016_j_colsurfa_2019_124282
crossref_primary_10_3390_nano11030776
crossref_primary_10_1007_s00339_020_04235_5
crossref_primary_10_1002_inf2_12262
crossref_primary_10_1039_D1TB00193K
crossref_primary_10_1016_j_adna_2024_06_001
crossref_primary_10_1016_j_matlet_2022_133020
crossref_primary_10_1016_j_ensm_2024_103873
crossref_primary_10_1016_j_cej_2021_130148
crossref_primary_10_1039_D3QM00965C
crossref_primary_10_1021_acsnano_0c03697
crossref_primary_10_1039_D0TB00861C
crossref_primary_10_1515_nanoph_2022_0550
crossref_primary_10_1039_D0NR04925E
crossref_primary_10_1002_admi_202200991
crossref_primary_10_1039_D2RA07483D
crossref_primary_10_1002_admt_202000325
crossref_primary_10_1186_s12645_022_00138_7
crossref_primary_10_1016_j_pecs_2023_101097
crossref_primary_10_1016_j_mtadv_2024_100512
crossref_primary_10_3390_ma14164453
crossref_primary_10_1016_j_ccr_2023_215616
crossref_primary_10_1016_j_jobab_2023_10_004
crossref_primary_10_1186_s11671_021_03510_5
crossref_primary_10_3390_nano11030559
crossref_primary_10_1021_acsenergylett_1c01656
crossref_primary_10_3390_membranes11110869
crossref_primary_10_1002_elt2_61
crossref_primary_10_1039_C9NR07616F
crossref_primary_10_1016_j_flatc_2023_100548
crossref_primary_10_1007_s10118_024_3063_2
crossref_primary_10_1016_j_microc_2024_111466
crossref_primary_10_1016_j_nanoso_2020_100457
crossref_primary_10_7498_aps_73_20231432
crossref_primary_10_1002_adfm_202003437
crossref_primary_10_1016_j_ccr_2024_215907
crossref_primary_10_1016_j_jiec_2023_01_014
crossref_primary_10_1016_j_jechem_2022_09_046
crossref_primary_10_1016_j_mtnano_2021_100119
crossref_primary_10_1016_j_apsusc_2022_155583
crossref_primary_10_1002_aenm_201902253
crossref_primary_10_1016_j_jcis_2022_10_109
crossref_primary_10_1016_j_bioactmat_2024_04_033
crossref_primary_10_1039_D4CC01811G
crossref_primary_10_1016_j_flatc_2023_100537
crossref_primary_10_1002_inf2_12052
crossref_primary_10_1039_D0CC07065C
crossref_primary_10_1088_1361_6528_ac385d
crossref_primary_10_1039_D3CS01024D
crossref_primary_10_1016_j_ijbiomac_2024_129489
crossref_primary_10_1016_j_dyepig_2018_08_057
crossref_primary_10_1088_1361_6463_ab1e89
crossref_primary_10_1002_adhm_202304060
crossref_primary_10_1039_D0NR08900A
crossref_primary_10_1016_j_ccr_2023_215275
crossref_primary_10_1016_j_saa_2024_124382
crossref_primary_10_1039_D1BM01604K
crossref_primary_10_1186_s12951_022_01317_9
crossref_primary_10_1039_D0CS01487G
crossref_primary_10_1007_s10853_021_06841_x
crossref_primary_10_4103_1673_5374_379037
crossref_primary_10_1039_D4TB02834A
crossref_primary_10_1007_s40820_022_00908_3
crossref_primary_10_1002_advs_202200296
crossref_primary_10_1021_acsnano_8b07224
crossref_primary_10_1515_nanoph_2022_0514
crossref_primary_10_1002_adma_202005858
crossref_primary_10_1021_acsnano_1c10836
crossref_primary_10_1016_j_bios_2021_113620
crossref_primary_10_1007_s00216_023_05054_2
crossref_primary_10_1039_D2QM00002D
crossref_primary_10_1039_D4NR04139A
crossref_primary_10_1088_1361_6528_ad61ed
crossref_primary_10_1039_D2CC01694J
crossref_primary_10_1002_nano_202200023
crossref_primary_10_1016_j_cej_2022_135012
crossref_primary_10_1016_j_ijhydene_2024_10_019
crossref_primary_10_1039_D0CS01138J
crossref_primary_10_1016_j_desal_2024_117312
crossref_primary_10_1016_j_est_2023_107656
crossref_primary_10_1039_D0CP01990A
crossref_primary_10_1186_s12951_022_01590_8
crossref_primary_10_1002_adfm_202411869
crossref_primary_10_1016_j_molliq_2021_115950
crossref_primary_10_1021_acsanm_1c03243
crossref_primary_10_1088_1674_4926_42_9_092601
crossref_primary_10_1021_acsami_1c13936
crossref_primary_10_1002_smsc_202100006
crossref_primary_10_1039_D1TA10783F
crossref_primary_10_1016_j_ensm_2020_11_035
crossref_primary_10_1016_j_memsci_2020_119033
crossref_primary_10_1016_j_cclet_2023_108286
crossref_primary_10_1039_D0NR05746K
crossref_primary_10_1016_j_vacuum_2023_112655
crossref_primary_10_1039_D3RA03340F
crossref_primary_10_1021_acsanm_0c02577
crossref_primary_10_1039_D0MA00938E
crossref_primary_10_3390_nano13020345
crossref_primary_10_1002_adma_202103148
crossref_primary_10_2139_ssrn_4168661
crossref_primary_10_1088_2515_7655_abdcab
crossref_primary_10_1016_j_biomaterials_2025_123234
crossref_primary_10_1016_j_cej_2022_137691
crossref_primary_10_1016_j_mtcomm_2023_107711
crossref_primary_10_1016_j_microc_2024_111041
crossref_primary_10_1088_1402_4896_ad36f6
crossref_primary_10_1016_j_mcat_2023_113284
crossref_primary_10_1080_15583724_2024_2319585
crossref_primary_10_1039_D1QM00035G
crossref_primary_10_1021_acsanm_4c03882
crossref_primary_10_1016_j_talanta_2021_122726
crossref_primary_10_1016_j_pmatsci_2023_101166
crossref_primary_10_1080_28378083_2024_2386526
crossref_primary_10_1039_D0NR07045A
crossref_primary_10_1039_C8BM00642C
crossref_primary_10_1016_j_apsusc_2022_154426
crossref_primary_10_1002_ange_201916748
crossref_primary_10_1002_admt_202301897
crossref_primary_10_1002_adma_202103393
crossref_primary_10_3390_bios13010030
crossref_primary_10_1007_s12274_023_5466_8
crossref_primary_10_1039_D3QM00216K
crossref_primary_10_1016_j_mtphys_2024_101382
crossref_primary_10_1080_02670844_2020_1833277
crossref_primary_10_3390_molecules28062495
crossref_primary_10_1039_D3CS00087G
crossref_primary_10_1002_cssc_201901746
crossref_primary_10_1016_j_jddst_2023_104569
crossref_primary_10_1016_j_colsurfb_2025_114568
Cites_doi 10.1039/C7NR05997C
10.1039/C6CP01699E
10.1002/aelm.201600255
10.1039/C5NH00125K
10.1038/nmat4374
10.1039/C7EN01239J
10.1021/acsnano.7b07241
10.1021/acsnano.6b00181
10.1016/j.snb.2015.04.090
10.1038/natrevmats.2016.98
10.1021/acs.jpcc.7b08180
10.1016/j.snb.2016.05.062
10.1007/s11664-017-5311-5
10.1021/acs.nanolett.7b01035
10.1038/srep32049
10.1021/acs.chemmater.6b01275
10.1021/acsnano.7b02578
10.1021/acs.nanolett.6b04339
10.1209/0295-5075/111/26007
10.7150/thno.23369
10.1063/1.4948799
10.1002/adma.201703284
10.1002/adma.201504657
10.1002/adma.201102306
10.1002/adfm.201202502
10.1038/s41598-017-01714-3
10.1021/acssuschemeng.7b02695
10.1002/ange.201510432
10.1016/j.electacta.2017.07.084
10.1021/acs.jpcc.5b05426
10.1016/j.bios.2015.08.004
10.1021/acsnano.7b06476
10.1149/1.1392573
10.1021/acsami.7b11055
10.1038/srep36422
10.1039/C6TA04628B
10.1103/PhysRevB.91.201409
10.1016/j.carbon.2017.03.023
10.1021/acs.chemmater.7b02847
10.1021/acsnano.7b03129
10.1002/adhm.201701394
10.1021/acs.chemmater.7b02441
10.1016/j.commatsci.2017.08.016
10.1021/jacs.7b07818
10.1021/acsbiomaterials.7b00432
10.1021/acsami.5b03737
10.1021/acsami.7b13421
10.1002/adma.201604847
10.1021/acs.jpcc.7b08496
10.1039/C7NR06958H
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/c7cs00838d
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
Materials Research Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 5124
ExternalDocumentID 29667670
10_1039_C7CS00838D
c7cs00838d
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
2WC
4.4
53G
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
0UZ
186
1TJ
3EH
6TJ
71~
8WZ
9M8
A6W
AAUTI
AAYXX
ABDPE
ACHDF
ACKIV
ACPVT
ACRPL
ADNMO
ADXHL
AETEA
AFFDN
AFFNX
AFRZK
AGQPQ
AHGXI
AI.
AIDUJ
AKMSF
ALSGL
ALUYA
ANBJS
ANLMG
AQHUZ
ASPBG
AVWKF
BBWZM
CAG
CITATION
EEHRC
FA8
FEDTE
HF~
HVGLF
H~9
IDY
J3G
J3H
L-8
MVM
NDZJH
R56
RCLXC
RIG
ROL
RRXOS
SC5
UQL
VH1
WHG
XJT
XOL
ZCG
ZKB
NPM
YIN
Z5M
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c436t-1f435a562ce87a08871bd4b5dc4d268e595d5eff7fce56d6cff677a20ccac7a53
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 02:56:17 EDT 2025
Fri Jul 11 09:54:57 EDT 2025
Sun Jun 29 16:24:05 EDT 2025
Wed Feb 19 02:44:38 EST 2025
Tue Jul 01 04:18:41 EDT 2025
Thu Apr 24 23:03:03 EDT 2025
Tue Dec 17 20:58:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-1f435a562ce87a08871bd4b5dc4d268e595d5eff7fce56d6cff677a20ccac7a53
Notes Gang Han received his BSc and MSc degrees in Chemistry from Nanjing University. He obtained his PhD (2007) at the University of Massachusetts-Amherst. He then became a postdoctoral researcher working at the molecular foundry of the Lawrence Berkeley National Lab. He joined the faculty of the University of Massachusetts-Medical School (UMMS) in 2010 and currently is an associate professor in the Biochemistry and Molecular Pharmacology department at UMMS. His current research includes the investigation of luminescent molecules and nanoparticles in biophotonic and photonic applications.
Jing Lin received her PhD in Organic Chemistry from Donghua University and Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences in 2010. Then she joined the PharmaResources (Shanghai) Co., Ltd as a group leader. After two years, she moved to the United States of America and spent 4 years as a postdoc at the University of Maryland and the National Institutes of Health (NIH). She joined the faculty of Shenzhen University (SZU) in 2016 and was promoted as a Distinguished Professor in 2018. Her research focuses on self-assembly of functional nanomaterials for diagnosis, treatment, and theranostics of diseases.
Kai Huang obtained his BSc in materials chemistry (University of Science and Technology of China) and PhD in Biomedical Engineering (National University of Singapore) in 2011 and 2016 respectively. After graduation, he was a postdoctoral researcher in the University of Massachusetts Medical School (UMMS). He is now a joint postdoctoral fellow of UMMS and the Laboratory of Evolutionary Theranostics (LET) at Shenzhen University. His research interest focuses on the design and development of energy conversion nanomaterials for biomedical applications.
Peng Huang received his PhD in Biomedical Engineering from Shanghai Jiao Tong University in 2012. Then he joined the Laboratory of Molecular Imaging and Nanomedicine (LOMIN) at the National Institutes of Health (NIH) as a postdoctoral fellow. In 2015, he moved to Shenzhen University (SZU) as a Distinguished Professor, Chief of Laboratory of Evolutionary Theranostics (LET), and Director of Department of Molecular Imaging. His research focuses on the design, synthesis, and biomedical applications of molecular imaging contrast agents, stimuli-responsive programmed targeting drug delivery systems, and activatable theranostics.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2300-5862
0000-0001-8693-2084
0000-0003-3651-7813
PMID 29667670
PQID 2070827598
PQPubID 2047503
PageCount 16
ParticipantIDs proquest_miscellaneous_2027068853
crossref_primary_10_1039_C7CS00838D
rsc_primary_c7cs00838d
proquest_miscellaneous_2220996876
crossref_citationtrail_10_1039_C7CS00838D
proquest_journals_2070827598
pubmed_primary_29667670
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180717
PublicationDateYYYYMMDD 2018-07-17
PublicationDate_xml – month: 7
  year: 2018
  text: 20180717
  day: 17
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Satheeshkumar (C7CS00838D-(cit43)/*[position()=1]) 2016; 6
Nasrallah (C7CS00838D-(cit50)/*[position()=1]) 2018
Hu (C7CS00838D-(cit10)/*[position()=1]) 2016; 18
Feng (C7CS00838D-(cit17)/*[position()=1]) 2017; 46
Dai (C7CS00838D-(cit13)/*[position()=1]) 2017; 11
Dai (C7CS00838D-(cit12)/*[position()=1]) 2017; 29
Zha (C7CS00838D-(cit18)/*[position()=1]) 2015; 111
Anasori (C7CS00838D-(cit16)/*[position()=1]) 2016; 1
Chandrasekaran (C7CS00838D-(cit30)/*[position()=1]) 2017; 17
Kumar (C7CS00838D-(cit29)/*[position()=1]) 2017; 11
Yu (C7CS00838D-(cit19)/*[position()=1]) 2015; 7
Chen (C7CS00838D-(cit3)/*[position()=1]) 2017; 3
Liu (C7CS00838D-(cit49)/*[position()=1]) 2018; 8
Berdiyorov (C7CS00838D-(cit21)/*[position()=1]) 2016; 6
Zhou (C7CS00838D-(cit45)/*[position()=1]) 2017; 118
Lin (C7CS00838D-(cit4)/*[position()=1]) 2017; 139
Xu (C7CS00838D-(cit47)/*[position()=1]) 2016; 28
Lee (C7CS00838D-(cit35)/*[position()=1]) 2017; 9
Liu (C7CS00838D-(cit37)/*[position()=1]) 2015; 218
Shahzad (C7CS00838D-(cit40)/*[position()=1]) 2017; 5
Chen (C7CS00838D-(cit32)/*[position()=1]) 2017; 121
Naguib (C7CS00838D-(cit1)/*[position()=1]) 2011; 23
Lipatov (C7CS00838D-(cit15)/*[position()=1]) 2016; 2
Ghidiu (C7CS00838D-(cit8)/*[position()=1]) 2016; 28
Rasool (C7CS00838D-(cit20)/*[position()=1]) 2016; 10
Wang (C7CS00838D-(cit27)/*[position()=1]) 2017; 11
Wang (C7CS00838D-(cit36)/*[position()=1]) 2015; 74
Rasool (C7CS00838D-(cit44)/*[position()=1]) 2017; 7
Soundiraraju (C7CS00838D-(cit25)/*[position()=1]) 2017; 11
Han (C7CS00838D-(cit48)/*[position()=1]) 2018; 7
Barsoum (C7CS00838D-(cit6)/*[position()=1]) 1999; 146
Magne (C7CS00838D-(cit23)/*[position()=1]) 2015; 91
Zhu (C7CS00838D-(cit39)/*[position()=1]) 2017; 248
Zhou (C7CS00838D-(cit7)/*[position()=1]) 2016; 128
Xue (C7CS00838D-(cit26)/*[position()=1]) 2017; 29
Rakhi (C7CS00838D-(cit38)/*[position()=1]) 2016; 6
Anasori (C7CS00838D-(cit2)/*[position()=1]) 2017; 2
Yu (C7CS00838D-(cit9)/*[position()=1]) 2017; 9
Sarycheva (C7CS00838D-(cit24)/*[position()=1]) 2017; 121
Alhabeb (C7CS00838D-(cit5)/*[position()=1]) 2017; 29
Zhang (C7CS00838D-(cit22)/*[position()=1]) 2016; 4
Liu (C7CS00838D-(cit14)/*[position()=1]) 2017; 9
Chen (C7CS00838D-(cit42)/*[position()=1]) 2018; 10
Xu (C7CS00838D-(cit11)/*[position()=1]) 2015; 14
Guo (C7CS00838D-(cit41)/*[position()=1]) 2015; 119
Yang (C7CS00838D-(cit33)/*[position()=1]) 2017; 139
Khazaei (C7CS00838D-(cit31)/*[position()=1]) 2013; 23
Lin (C7CS00838D-(cit28)/*[position()=1]) 2017; 17
Lin (C7CS00838D-(cit46)/*[position()=1]) 2018; 30
Xiao (C7CS00838D-(cit34)/*[position()=1]) 2016; 235
References_xml – volume: 9
  start-page: 17859
  year: 2017
  ident: C7CS00838D-(cit9)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR05997C
– volume: 18
  start-page: 20256
  year: 2016
  ident: C7CS00838D-(cit10)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP01699E
– volume: 2
  start-page: 1600255
  year: 2016
  ident: C7CS00838D-(cit15)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600255
– volume: 1
  start-page: 227
  year: 2016
  ident: C7CS00838D-(cit16)/*[position()=1]
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C5NH00125K
– volume: 14
  start-page: 1135
  year: 2015
  ident: C7CS00838D-(cit11)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4374
– year: 2018
  ident: C7CS00838D-(cit50)/*[position()=1]
  publication-title: Environ. Sci.: Nano
  doi: 10.1039/C7EN01239J
– volume: 11
  start-page: 12696
  year: 2017
  ident: C7CS00838D-(cit13)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07241
– volume: 10
  start-page: 3674
  year: 2016
  ident: C7CS00838D-(cit20)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b00181
– volume: 218
  start-page: 60
  year: 2015
  ident: C7CS00838D-(cit37)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2015.04.090
– volume: 2
  start-page: 16098
  year: 2017
  ident: C7CS00838D-(cit2)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.98
– volume: 121
  start-page: 19983
  year: 2017
  ident: C7CS00838D-(cit24)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b08180
– volume: 235
  start-page: 103
  year: 2016
  ident: C7CS00838D-(cit34)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2016.05.062
– volume: 46
  start-page: 2460
  year: 2017
  ident: C7CS00838D-(cit17)/*[position()=1]
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-017-5311-5
– volume: 17
  start-page: 3290
  year: 2017
  ident: C7CS00838D-(cit30)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01035
– volume: 6
  start-page: 32049
  year: 2016
  ident: C7CS00838D-(cit43)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep32049
– volume: 28
  start-page: 3507
  year: 2016
  ident: C7CS00838D-(cit8)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01275
– volume: 11
  start-page: 7648
  year: 2017
  ident: C7CS00838D-(cit29)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02578
– volume: 17
  start-page: 384
  year: 2017
  ident: C7CS00838D-(cit28)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04339
– volume: 111
  start-page: 26007
  year: 2015
  ident: C7CS00838D-(cit18)/*[position()=1]
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/111/26007
– volume: 8
  start-page: 1648
  year: 2018
  ident: C7CS00838D-(cit49)/*[position()=1]
  publication-title: Theranostics
  doi: 10.7150/thno.23369
– volume: 6
  start-page: 055105
  year: 2016
  ident: C7CS00838D-(cit21)/*[position()=1]
  publication-title: AIP Adv.
  doi: 10.1063/1.4948799
– volume: 30
  start-page: 1703284
  year: 2018
  ident: C7CS00838D-(cit46)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703284
– volume: 28
  start-page: 3333
  year: 2016
  ident: C7CS00838D-(cit47)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504657
– volume: 23
  start-page: 4248
  year: 2011
  ident: C7CS00838D-(cit1)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102306
– volume: 23
  start-page: 2185
  year: 2013
  ident: C7CS00838D-(cit31)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202502
– volume: 7
  start-page: 1598
  year: 2017
  ident: C7CS00838D-(cit44)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01714-3
– volume: 5
  start-page: 11481
  year: 2017
  ident: C7CS00838D-(cit40)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02695
– volume: 128
  start-page: 5092
  year: 2016
  ident: C7CS00838D-(cit7)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201510432
– volume: 248
  start-page: 46
  year: 2017
  ident: C7CS00838D-(cit39)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.07.084
– volume: 119
  start-page: 20923
  year: 2015
  ident: C7CS00838D-(cit41)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b05426
– volume: 74
  start-page: 1022
  year: 2015
  ident: C7CS00838D-(cit36)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.08.004
– volume: 11
  start-page: 11559
  year: 2017
  ident: C7CS00838D-(cit27)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06476
– volume: 146
  start-page: 3919
  year: 1999
  ident: C7CS00838D-(cit6)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1392573
– volume: 9
  start-page: 37184
  year: 2017
  ident: C7CS00838D-(cit35)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11055
– volume: 6
  start-page: 36422
  year: 2016
  ident: C7CS00838D-(cit38)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep36422
– volume: 4
  start-page: 12913
  year: 2016
  ident: C7CS00838D-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04628B
– volume: 91
  start-page: 201409
  year: 2015
  ident: C7CS00838D-(cit23)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.91.201409
– volume: 118
  start-page: 50
  year: 2017
  ident: C7CS00838D-(cit45)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.03.023
– volume: 29
  start-page: 7633
  year: 2017
  ident: C7CS00838D-(cit5)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02847
– volume: 11
  start-page: 8892
  year: 2017
  ident: C7CS00838D-(cit25)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03129
– volume: 7
  start-page: 1701394
  year: 2018
  ident: C7CS00838D-(cit48)/*[position()=1]
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201701394
– volume: 29
  start-page: 8637
  year: 2017
  ident: C7CS00838D-(cit12)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02441
– volume: 139
  start-page: 313
  year: 2017
  ident: C7CS00838D-(cit33)/*[position()=1]
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2017.08.016
– volume: 139
  start-page: 16235
  year: 2017
  ident: C7CS00838D-(cit4)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07818
– volume: 3
  start-page: 2293
  year: 2017
  ident: C7CS00838D-(cit3)/*[position()=1]
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.7b00432
– volume: 7
  start-page: 13707
  year: 2015
  ident: C7CS00838D-(cit19)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03737
– volume: 9
  start-page: 40077
  year: 2017
  ident: C7CS00838D-(cit14)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13421
– volume: 29
  start-page: 1604847
  year: 2017
  ident: C7CS00838D-(cit26)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604847
– volume: 121
  start-page: 25729
  year: 2017
  ident: C7CS00838D-(cit32)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b08496
– volume: 10
  start-page: 1111
  year: 2018
  ident: C7CS00838D-(cit42)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR06958H
SSID ssj0011762
Score 2.7020361
SecondaryResourceType review_article
Snippet Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of M n +1 X n ( n = 1-3), integrate the advantages of metallic...
Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of M n+1 X n ( n = 1–3), integrate the advantages of metallic...
Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of Mn+1Xn (n = 1-3), integrate the advantages of metallic...
Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of Mn+1Xn (n = 1–3), integrate the advantages of metallic...
Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of Mₙ₊₁Xₙ (n = 1–3), integrate the advantages of metallic...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 519
SubjectTerms Antibacterial materials
Biomedical materials
Biosensors
carbides
Carbon nitride
Magnetic properties
magnetism
Medical imaging
Metal carbides
MXenes
Nitrides
Optical properties
Physiochemistry
precision medicine
transition elements
Transition metals
Title Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications
URI https://www.ncbi.nlm.nih.gov/pubmed/29667670
https://www.proquest.com/docview/2070827598
https://www.proquest.com/docview/2027068853
https://www.proquest.com/docview/2220996876
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gAviNsgMJARPLCHjNTxJXmcSscY3XiglSp4iOJLYNOUol6ExK_n2LGTABUavETtqZVGPp-PP8fH30HoZZnllbTZMxmteEx1mkAcZBmsUqTRXAKFpvY08tk5P5nR0zmbDwanvaylzVoeqh9bz5X8j1fBBn61p2T_wbPtTcEAn8G_cAUPw_V6Pv6-iLWV51-FrHGYeFwOlq0MbZU_yqW80KbRYYbBu3RfgFSezY3T6M-bdE13Br_RDehtaPeJayssENI8vYxpBwv_4vl9edEm-bhMgU9fF_WXy02X-uPrf4U504U_Z3pbepN_CzHMYqct2QuclCcxFY2W46HZYvPRloo-qmgvdkJ0yLcG9SS1mqhKqJUljJnupq6wXX_-oTieTSbFdDyf3kC7BJYMEPN2j8bTd5N2T2koXHnZ9qmCWG2av-7u_Ss9-WPNAQxkGSrDOAYyvYNu-6UDPmpwcBcNTH0P3RyFin330eff8IA7PGCHBxzwgAEPOOABv2rQcIABC7jDAu5j4QGaHY-no5PYF8-IFU35Oh5WQIRLYLfKZKK0c8lQaiqZVlQTnhmWM81MVYlKGcY1V1XFhShJAkNaiZKle2inXtTmEcJEAacDLsWJlDSRVrqSKWb5jYRxLWWEDkKfFcory9sCJ1eFy3BI82IkRh9d_76J0Iu27bdGT2Vrq_3Q9YUfb6uCwOyUEcHyLELP25-hi-0WV1mbxca2IcKWUWLpX9oQe1ycAw2I0MPGre2jkNzmfIskQnvg59bc4ePxNf76CbrVDZF9tLNebsxToK5r-cxj8idbRZrD
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+transition+metal+carbides+and+nitrides+%28MXenes%29+for+biomedical+applications&rft.jtitle=Chemical+Society+reviews&rft.au=Huang%2C+Kai&rft.au=Li%2C+Zhongjun&rft.au=Lin%2C+Jing&rft.au=Han%2C+Gang&rft.date=2018-07-17&rft.issn=1460-4744&rft.eissn=1460-4744&rft.volume=47&rft.issue=14&rft.spage=5109&rft_id=info:doi/10.1039%2Fc7cs00838d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon