Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications
Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of M n +1 X n ( n = 1-3), integrate the advantages of metallic conductive transition metals with large groups of carbides, nitrides, or carbonitrides. They have led to a burgeoning research interest in bio...
Saved in:
Published in | Chemical Society reviews Vol. 47; no. 14; pp. 519 - 5124 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
17.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of M
n
+1
X
n
(
n
= 1-3), integrate the advantages of metallic conductive transition metals with large groups of carbides, nitrides, or carbonitrides. They have led to a burgeoning research interest in biomedical applications due to their ultrathin structure and fascinating physiochemical (electronic, optical, magnetic,
etc.
) properties. In this review, we summarize recent advances in biomedical applications for MXenes. We first introduce the preparation methods and surface modifications with respect to MXenes. Their unique properties are then elaborated. Thirdly, we highlight their various biomedical applications, such as with biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics. In the end, the current challenges and new opportunities for MXenes in regard to their biomedical applications are also discussed.
MXenes with an ultrathin structure and fascinating physiochemical (electronic, optical, magnetic,
etc.
) properties have great potential for biomedical applications, such as biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics. |
---|---|
AbstractList | Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of M
n
+1
X
n
(
n
= 1-3), integrate the advantages of metallic conductive transition metals with large groups of carbides, nitrides, or carbonitrides. They have led to a burgeoning research interest in biomedical applications due to their ultrathin structure and fascinating physiochemical (electronic, optical, magnetic,
etc.
) properties. In this review, we summarize recent advances in biomedical applications for MXenes. We first introduce the preparation methods and surface modifications with respect to MXenes. Their unique properties are then elaborated. Thirdly, we highlight their various biomedical applications, such as with biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics. In the end, the current challenges and new opportunities for MXenes in regard to their biomedical applications are also discussed.
MXenes with an ultrathin structure and fascinating physiochemical (electronic, optical, magnetic,
etc.
) properties have great potential for biomedical applications, such as biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics. Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of Mn+1Xn (n = 1-3), integrate the advantages of metallic conductive transition metals with large groups of carbides, nitrides, or carbonitrides. They have led to a burgeoning research interest in biomedical applications due to their ultrathin structure and fascinating physiochemical (electronic, optical, magnetic, etc.) properties. In this review, we summarize recent advances in biomedical applications for MXenes. We first introduce the preparation methods and surface modifications with respect to MXenes. Their unique properties are then elaborated. Thirdly, we highlight their various biomedical applications, such as with biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics. In the end, the current challenges and new opportunities for MXenes in regard to their biomedical applications are also discussed.Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of Mn+1Xn (n = 1-3), integrate the advantages of metallic conductive transition metals with large groups of carbides, nitrides, or carbonitrides. They have led to a burgeoning research interest in biomedical applications due to their ultrathin structure and fascinating physiochemical (electronic, optical, magnetic, etc.) properties. In this review, we summarize recent advances in biomedical applications for MXenes. We first introduce the preparation methods and surface modifications with respect to MXenes. Their unique properties are then elaborated. Thirdly, we highlight their various biomedical applications, such as with biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics. In the end, the current challenges and new opportunities for MXenes in regard to their biomedical applications are also discussed. Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of Mₙ₊₁Xₙ (n = 1–3), integrate the advantages of metallic conductive transition metals with large groups of carbides, nitrides, or carbonitrides. They have led to a burgeoning research interest in biomedical applications due to their ultrathin structure and fascinating physiochemical (electronic, optical, magnetic, etc.) properties. In this review, we summarize recent advances in biomedical applications for MXenes. We first introduce the preparation methods and surface modifications with respect to MXenes. Their unique properties are then elaborated. Thirdly, we highlight their various biomedical applications, such as with biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics. In the end, the current challenges and new opportunities for MXenes in regard to their biomedical applications are also discussed. Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of Mn+1Xn (n = 1–3), integrate the advantages of metallic conductive transition metals with large groups of carbides, nitrides, or carbonitrides. They have led to a burgeoning research interest in biomedical applications due to their ultrathin structure and fascinating physiochemical (electronic, optical, magnetic, etc.) properties. In this review, we summarize recent advances in biomedical applications for MXenes. We first introduce the preparation methods and surface modifications with respect to MXenes. Their unique properties are then elaborated. Thirdly, we highlight their various biomedical applications, such as with biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics. In the end, the current challenges and new opportunities for MXenes in regard to their biomedical applications are also discussed. Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of M n+1 X n ( n = 1–3), integrate the advantages of metallic conductive transition metals with large groups of carbides, nitrides, or carbonitrides. They have led to a burgeoning research interest in biomedical applications due to their ultrathin structure and fascinating physiochemical (electronic, optical, magnetic, etc. ) properties. In this review, we summarize recent advances in biomedical applications for MXenes. We first introduce the preparation methods and surface modifications with respect to MXenes. Their unique properties are then elaborated. Thirdly, we highlight their various biomedical applications, such as with biosensors, antibacterial materials, bioimaging probes, therapeutics, and theranostics. In the end, the current challenges and new opportunities for MXenes in regard to their biomedical applications are also discussed. |
Author | Li, Zhongjun Lin, Jing Han, Gang Huang, Peng Huang, Kai |
AuthorAffiliation | Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School |
AuthorAffiliation_xml | – sequence: 0 name: Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University – sequence: 0 name: Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School – sequence: 0 name: Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University |
Author_xml | – sequence: 1 givenname: Kai surname: Huang fullname: Huang, Kai – sequence: 2 givenname: Zhongjun surname: Li fullname: Li, Zhongjun – sequence: 3 givenname: Jing surname: Lin fullname: Lin, Jing – sequence: 4 givenname: Gang surname: Han fullname: Han, Gang – sequence: 5 givenname: Peng surname: Huang fullname: Huang, Peng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29667670$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ktLxDAQB_AgirurXrwrBS-rUJ2mzaNHWZ-w4kEFwUNJ84AsbbMmXcRvb3bXB4jgKZPwmzn8JyO02blOI7SfwWkGeXkmmQwAPOdqAw2zgkJasKLYREPIgaYAGR6gUQizWGWM4m00wCWljDIYopfHN5cq2-ouWNeJJum9iGUfL0mr-_ggha-t0iERnUo62_vVZXz3rDsdjhPjfFJb12plZdRiPm9isewPu2jLiCbovc9zBz1dXT5ObtLp_fXt5HyayiKnfZqZIieCUCw1ZwI4Z1mtipooWShMuSYlUUQbw4zUhCoqjaGMCQxSCskEyXfQeD137t3rQoe-am2QumlEp90iVBhjKEvKGf2fAmZAOSd5pEe_6MwtfIxoqRhwzEjJozr8VIs6ZlDNvW2Ff6--Eo4A1kB6F4LXppK2X-UTk7ZNlUG1XGI1YZOH1RIvYsvJr5avqX_igzX2QX67nx-RfwCqiaXe |
CitedBy_id | crossref_primary_10_1002_sstr_202100120 crossref_primary_10_1039_D2NR05447G crossref_primary_10_1088_2053_1583_ac52b3 crossref_primary_10_1088_2053_1583_ab6a60 crossref_primary_10_1016_j_mattod_2021_02_010 crossref_primary_10_1039_D1MA00625H crossref_primary_10_3390_molecules28124617 crossref_primary_10_1021_acs_nanolett_2c01914 crossref_primary_10_1016_j_cej_2023_145700 crossref_primary_10_1016_j_measurement_2022_110782 crossref_primary_10_1016_j_xcrp_2021_100536 crossref_primary_10_2174_1573413719666230120103335 crossref_primary_10_1002_adma_201906697 crossref_primary_10_1021_acsinfecdis_4c00860 crossref_primary_10_3390_nano12111907 crossref_primary_10_1021_acs_chemmater_9b00414 crossref_primary_10_3389_fbioe_2019_00320 crossref_primary_10_1021_acsami_4c13973 crossref_primary_10_3390_chemistry3040095 crossref_primary_10_1016_j_jiec_2025_02_020 crossref_primary_10_1016_j_apsusc_2023_156562 crossref_primary_10_1186_s13036_023_00355_7 crossref_primary_10_1016_j_carbon_2024_119412 crossref_primary_10_1039_D0CP04886K crossref_primary_10_1016_j_ccr_2022_214965 crossref_primary_10_1016_j_ijhydene_2023_03_031 crossref_primary_10_1016_j_ceramint_2019_06_114 crossref_primary_10_1016_j_greenca_2025_01_001 crossref_primary_10_1088_1674_4926_42_5_051001 crossref_primary_10_1186_s12938_021_00873_9 crossref_primary_10_1016_j_jallcom_2019_153242 crossref_primary_10_1002_cphc_201900551 crossref_primary_10_1016_j_surfin_2022_102493 crossref_primary_10_3389_fchem_2020_565940 crossref_primary_10_1002_adma_202003154 crossref_primary_10_1002_slct_202300737 crossref_primary_10_1021_acsami_3c04582 crossref_primary_10_1039_D1TB02759J crossref_primary_10_1016_j_mtcomm_2023_105529 crossref_primary_10_1039_C9SC03049B crossref_primary_10_1002_pc_27270 crossref_primary_10_1016_j_tifs_2024_104635 crossref_primary_10_1002_admi_202202172 crossref_primary_10_1021_acsnano_9b07708 crossref_primary_10_1016_j_ceramint_2024_03_285 crossref_primary_10_1016_j_bioactmat_2024_05_023 crossref_primary_10_1016_j_ssc_2022_114893 crossref_primary_10_3390_polym14163433 crossref_primary_10_1016_j_cej_2023_142409 crossref_primary_10_1021_acs_inorgchem_9b00329 crossref_primary_10_1039_D1MH00986A crossref_primary_10_1021_acsenergylett_3c00340 crossref_primary_10_3390_ijms20225776 crossref_primary_10_1016_j_apcatb_2023_123585 crossref_primary_10_1039_D2LC01008A crossref_primary_10_1186_s12951_022_01428_3 crossref_primary_10_1016_j_cej_2023_141303 crossref_primary_10_1016_j_snb_2020_127735 crossref_primary_10_3390_nano9081139 crossref_primary_10_1039_D2NA00623E crossref_primary_10_1016_j_est_2024_111420 crossref_primary_10_1007_s40820_020_0411_9 crossref_primary_10_1039_C9TC04187G crossref_primary_10_1016_j_snb_2022_133103 crossref_primary_10_1002_aelm_201901382 crossref_primary_10_3390_s20185434 crossref_primary_10_2174_2210681213666230911161526 crossref_primary_10_1016_j_aca_2024_343069 crossref_primary_10_1016_j_physb_2024_416154 crossref_primary_10_1016_j_compositesa_2022_107362 crossref_primary_10_1016_j_jmrt_2024_04_233 crossref_primary_10_1016_j_addr_2022_114178 crossref_primary_10_1039_C9NR01220F crossref_primary_10_1002_cctc_202100204 crossref_primary_10_1002_adom_202300340 crossref_primary_10_1016_j_mtcomm_2024_108024 crossref_primary_10_1016_j_cej_2020_128348 crossref_primary_10_1016_j_bioelechem_2020_107674 crossref_primary_10_1016_j_jece_2023_110052 crossref_primary_10_3389_fbioe_2023_1154301 crossref_primary_10_1039_D3RA01276J crossref_primary_10_34133_bmr_0143 crossref_primary_10_1016_j_actbio_2022_10_005 crossref_primary_10_1021_acsnano_0c06287 crossref_primary_10_1039_D0NR05287F crossref_primary_10_1016_j_jece_2024_112316 crossref_primary_10_1080_10408436_2022_2150124 crossref_primary_10_1007_s40820_023_01074_w crossref_primary_10_1002_adfm_202007584 crossref_primary_10_1002_adfm_202000712 crossref_primary_10_1021_acsnano_1c04526 crossref_primary_10_1021_acs_jpcc_9b00715 crossref_primary_10_1149_1945_7111_ad26e2 crossref_primary_10_1002_adfm_201807326 crossref_primary_10_1002_admt_202101623 crossref_primary_10_1007_s10853_023_08337_2 crossref_primary_10_1039_D0TB00251H crossref_primary_10_3390_nano13060958 crossref_primary_10_1016_j_vacuum_2024_113730 crossref_primary_10_3390_ph17070950 crossref_primary_10_3390_s21144938 crossref_primary_10_1021_acsanm_4c02832 crossref_primary_10_1016_j_eurpolymj_2024_113180 crossref_primary_10_1021_acs_jpcc_2c00098 crossref_primary_10_3390_nano13050919 crossref_primary_10_1007_s10895_022_03012_2 crossref_primary_10_1002_smll_202207249 crossref_primary_10_1021_acs_nanolett_2c03260 crossref_primary_10_1021_acs_langmuir_0c02521 crossref_primary_10_1007_s40820_022_00880_y crossref_primary_10_1016_j_procbio_2023_06_022 crossref_primary_10_1021_acssensors_0c01961 crossref_primary_10_1016_j_nanoen_2019_03_020 crossref_primary_10_2139_ssrn_4180190 crossref_primary_10_1002_ange_201913095 crossref_primary_10_1515_nanoph_2019_0418 crossref_primary_10_1016_j_cej_2021_129296 crossref_primary_10_3390_biomimetics7040222 crossref_primary_10_1002_smll_202007113 crossref_primary_10_1016_j_jconrel_2019_02_015 crossref_primary_10_1039_D1MA00189B crossref_primary_10_1039_D3EN00827D crossref_primary_10_1016_j_cej_2020_124312 crossref_primary_10_1088_1361_6463_ad9593 crossref_primary_10_1002_admt_202001197 crossref_primary_10_3390_nano11123412 crossref_primary_10_1088_2515_7639_ab8f78 crossref_primary_10_1016_j_biomaterials_2020_119827 crossref_primary_10_1126_sciadv_aay6825 crossref_primary_10_1016_j_apsusc_2020_148241 crossref_primary_10_1016_j_susmat_2022_e00462 crossref_primary_10_1039_D3MA00362K crossref_primary_10_1016_j_addr_2021_114031 crossref_primary_10_3390_molecules26144301 crossref_primary_10_1021_acsami_0c03181 crossref_primary_10_1016_j_nwnano_2025_100073 crossref_primary_10_1002_smll_202310483 crossref_primary_10_1016_j_bioactmat_2021_06_021 crossref_primary_10_1002_admt_202001189 crossref_primary_10_1002_aelm_202400143 crossref_primary_10_1039_D0TB00566E crossref_primary_10_1016_j_bios_2020_112730 crossref_primary_10_1016_j_jelechem_2022_117012 crossref_primary_10_1016_j_biomaterials_2024_122548 crossref_primary_10_1016_j_cej_2020_124340 crossref_primary_10_1039_C9TA01850F crossref_primary_10_1016_j_susmat_2022_e00439 crossref_primary_10_1016_j_aca_2022_340494 crossref_primary_10_1016_j_nantod_2019_02_008 crossref_primary_10_1002_advs_202101043 crossref_primary_10_1039_D0NR02581J crossref_primary_10_1016_j_cej_2020_125428 crossref_primary_10_3390_bios12050332 crossref_primary_10_1016_j_apmt_2020_100574 crossref_primary_10_1021_acs_jpcc_9b04713 crossref_primary_10_1002_adhm_202000872 crossref_primary_10_1016_j_compositesb_2024_112086 crossref_primary_10_1007_s12274_022_5313_3 crossref_primary_10_1007_s40820_022_00958_7 crossref_primary_10_1021_acs_chemmater_1c03166 crossref_primary_10_1016_j_optmat_2024_115824 crossref_primary_10_1016_j_trac_2020_115983 crossref_primary_10_1007_s10854_023_11695_x crossref_primary_10_1016_j_ceramint_2022_05_137 crossref_primary_10_1002_aenm_202202860 crossref_primary_10_1016_j_saa_2020_118336 crossref_primary_10_1016_j_jcis_2021_01_063 crossref_primary_10_1038_s41596_024_00969_1 crossref_primary_10_1016_j_jpowsour_2020_229276 crossref_primary_10_1016_j_biomaterials_2024_122523 crossref_primary_10_1039_D2NR06625D crossref_primary_10_1039_D0TA01798A crossref_primary_10_1039_D2MA00151A crossref_primary_10_1016_j_envres_2023_115337 crossref_primary_10_1039_D2TB01503J crossref_primary_10_1007_s00604_019_4049_6 crossref_primary_10_1007_s12274_021_3991_x crossref_primary_10_1039_D3TA06548K crossref_primary_10_1016_j_apsusc_2022_152934 crossref_primary_10_1021_acsomega_0c03970 crossref_primary_10_1016_j_apmt_2024_102215 crossref_primary_10_2139_ssrn_4115329 crossref_primary_10_1016_j_gee_2020_11_008 crossref_primary_10_1016_j_seppur_2022_120641 crossref_primary_10_1002_advs_202101498 crossref_primary_10_1142_S1793545820300104 crossref_primary_10_1016_j_apsusc_2022_156299 crossref_primary_10_1021_acsanm_4c05026 crossref_primary_10_2174_1872212118666230823113826 crossref_primary_10_1002_adfm_202108495 crossref_primary_10_1016_j_jhazmat_2024_134002 crossref_primary_10_1016_j_jallcom_2020_158547 crossref_primary_10_1039_D2TA03481F crossref_primary_10_1016_j_ceramint_2021_02_226 crossref_primary_10_1021_acsami_0c09921 crossref_primary_10_1016_j_est_2022_104711 crossref_primary_10_1016_j_ijbiomac_2021_04_164 crossref_primary_10_1016_j_surfin_2024_104169 crossref_primary_10_1007_s12274_023_5527_z crossref_primary_10_1002_smll_202006054 crossref_primary_10_1021_acsnano_1c01890 crossref_primary_10_1016_j_jhazmat_2020_122423 crossref_primary_10_1149_2_0142003JES crossref_primary_10_1016_j_cossms_2019_06_004 crossref_primary_10_1016_j_smaim_2024_10_002 crossref_primary_10_1007_s00132_024_04520_8 crossref_primary_10_1016_j_envres_2022_113071 crossref_primary_10_1039_D1NJ00344E crossref_primary_10_1109_JSEN_2022_3154385 crossref_primary_10_3389_fmats_2021_633079 crossref_primary_10_1002_anbr_202200067 crossref_primary_10_1016_j_nantod_2021_101136 crossref_primary_10_1039_D4TB01904K crossref_primary_10_1016_j_electacta_2019_06_045 crossref_primary_10_3390_cancers15010146 crossref_primary_10_3390_pharmaceutics14061217 crossref_primary_10_1039_C9SC00324J crossref_primary_10_1002_app_52029 crossref_primary_10_1021_acs_energyfuels_1c00958 crossref_primary_10_1021_acs_chemrev_3c00302 crossref_primary_10_1021_acsanm_2c05140 crossref_primary_10_1021_acsanm_9b00286 crossref_primary_10_1002_smll_202201300 crossref_primary_10_1016_j_jmmm_2022_169895 crossref_primary_10_1007_s40843_020_1387_7 crossref_primary_10_1177_09540083221123476 crossref_primary_10_1016_j_actbio_2020_08_010 crossref_primary_10_1016_j_ccr_2020_213514 crossref_primary_10_3390_polym15204067 crossref_primary_10_1002_adfm_202105043 crossref_primary_10_1002_nano_202000309 crossref_primary_10_1016_j_scitotenv_2024_173755 crossref_primary_10_1063_5_0064529 crossref_primary_10_1002_adfm_202104199 crossref_primary_10_1016_j_pmatsci_2020_100733 crossref_primary_10_1002_eem2_12058 crossref_primary_10_1016_j_ceramint_2023_03_109 crossref_primary_10_1016_j_seppur_2021_119722 crossref_primary_10_1016_j_ccr_2021_213806 crossref_primary_10_1016_j_cej_2022_138228 crossref_primary_10_1002_adma_202412000 crossref_primary_10_1016_j_matdes_2020_109091 crossref_primary_10_1016_j_jphotochem_2022_113792 crossref_primary_10_1002_smll_202100946 crossref_primary_10_1016_j_biomaterials_2022_121507 crossref_primary_10_1016_j_physb_2022_413922 crossref_primary_10_1039_D0TA01552K crossref_primary_10_1016_j_bioactmat_2021_12_011 crossref_primary_10_3390_bios12070454 crossref_primary_10_1021_acsnano_1c08239 crossref_primary_10_1021_acsnano_2c12270 crossref_primary_10_1016_j_flatc_2023_100470 crossref_primary_10_1021_acsmaterialslett_3c00965 crossref_primary_10_1039_D1TB02277F crossref_primary_10_1002_adhm_202100970 crossref_primary_10_3390_ma14040829 crossref_primary_10_1016_j_ccr_2022_215002 crossref_primary_10_1007_s12209_021_00282_y crossref_primary_10_1021_acsami_2c20543 crossref_primary_10_1039_D4MA00234B crossref_primary_10_1016_j_aca_2020_08_063 crossref_primary_10_1016_j_saa_2023_123019 crossref_primary_10_1016_j_chemosphere_2024_141955 crossref_primary_10_1016_j_mtchem_2022_101235 crossref_primary_10_1016_j_jhazmat_2022_128750 crossref_primary_10_1021_acs_langmuir_3c04045 crossref_primary_10_1016_j_biomaterials_2019_119684 crossref_primary_10_1021_acsaem_3c02852 crossref_primary_10_1039_D1TC03610F crossref_primary_10_1021_acsami_0c09310 crossref_primary_10_1016_j_commatsci_2024_112947 crossref_primary_10_1021_acsomega_2c02441 crossref_primary_10_1016_j_apsusc_2024_160765 crossref_primary_10_1002_adhm_202202208 crossref_primary_10_1016_j_desal_2024_117837 crossref_primary_10_1016_j_inoche_2024_113214 crossref_primary_10_1016_j_jelechem_2023_117389 crossref_primary_10_1016_j_est_2021_102322 crossref_primary_10_1002_adfm_202104149 crossref_primary_10_1002_adma_201902333 crossref_primary_10_1016_j_eurpolymj_2024_113512 crossref_primary_10_1016_j_jenvman_2022_116387 crossref_primary_10_1002_eem2_12023 crossref_primary_10_1002_smll_202201740 crossref_primary_10_1016_j_jallcom_2021_163039 crossref_primary_10_1021_acsami_0c11824 crossref_primary_10_1016_j_pmatsci_2023_101220 crossref_primary_10_1002_smll_202201989 crossref_primary_10_1088_1361_648X_ac9f93 crossref_primary_10_1002_solr_201900400 crossref_primary_10_1021_acs_nanolett_1c01986 crossref_primary_10_1021_acs_iecr_8b05416 crossref_primary_10_1002_EXP_20230163 crossref_primary_10_1039_C9TB02060H crossref_primary_10_1002_celc_202200103 crossref_primary_10_1007_s00604_019_4000_x crossref_primary_10_1007_s10854_022_08912_4 crossref_primary_10_1039_D0AN01489C crossref_primary_10_1016_j_cej_2020_124519 crossref_primary_10_1002_cey2_200 crossref_primary_10_1016_j_cej_2021_132663 crossref_primary_10_1016_j_jallcom_2021_158913 crossref_primary_10_1016_j_ccr_2020_213549 crossref_primary_10_1039_D4MH01056F crossref_primary_10_1039_D3CP00600J crossref_primary_10_1039_D2EN00527A crossref_primary_10_3390_ma13102347 crossref_primary_10_1039_D0TB02085K crossref_primary_10_2139_ssrn_4016998 crossref_primary_10_1016_j_cplett_2025_141931 crossref_primary_10_1021_acsanm_1c00219 crossref_primary_10_1002_adma_202205154 crossref_primary_10_1016_j_mtcomm_2024_109929 crossref_primary_10_1002_cnma_202000448 crossref_primary_10_1002_adfm_202406529 crossref_primary_10_1002_smtd_202101599 crossref_primary_10_1016_j_memsci_2024_123322 crossref_primary_10_1002_adsu_202400011 crossref_primary_10_1016_j_flatc_2024_100719 crossref_primary_10_3390_ma17225513 crossref_primary_10_1016_j_mtcomm_2023_106136 crossref_primary_10_1002_smll_201901190 crossref_primary_10_1016_j_gee_2024_09_002 crossref_primary_10_1016_j_apsadv_2025_100713 crossref_primary_10_1021_acsanm_4c05792 crossref_primary_10_1016_j_rser_2021_110878 crossref_primary_10_1134_S0040579522040042 crossref_primary_10_1016_j_talanta_2024_126485 crossref_primary_10_1515_nanoph_2021_0205 crossref_primary_10_1039_D1BM00526J crossref_primary_10_1177_15330338221142996 crossref_primary_10_1007_s40820_020_00504_3 crossref_primary_10_1002_pat_6346 crossref_primary_10_1016_j_est_2021_102993 crossref_primary_10_1002_smll_201805339 crossref_primary_10_1063_5_0026093 crossref_primary_10_1002_adhm_202101439 crossref_primary_10_1016_j_apsusc_2022_154124 crossref_primary_10_1016_j_matt_2020_10_024 crossref_primary_10_1002_smll_202401603 crossref_primary_10_1016_j_surfin_2024_104628 crossref_primary_10_3389_fchem_2020_00297 crossref_primary_10_3390_mi13091383 crossref_primary_10_1016_j_ijhydene_2020_11_278 crossref_primary_10_1016_j_bioadv_2022_213055 crossref_primary_10_1016_j_jallcom_2020_155985 crossref_primary_10_1021_acsbiomaterials_9b01894 crossref_primary_10_1016_j_snb_2019_03_052 crossref_primary_10_1039_D3TB02306K crossref_primary_10_1016_j_cclet_2019_11_016 crossref_primary_10_1016_j_cclet_2023_108180 crossref_primary_10_3390_s22239358 crossref_primary_10_1002_adfm_202106786 crossref_primary_10_1016_j_jece_2024_114812 crossref_primary_10_1002_smll_201906814 crossref_primary_10_1016_j_microc_2024_112068 crossref_primary_10_1016_j_est_2021_103824 crossref_primary_10_1007_s00289_023_05099_4 crossref_primary_10_1039_D1SE01681D crossref_primary_10_1016_j_mseb_2022_115798 crossref_primary_10_3390_molecules29225233 crossref_primary_10_1016_j_snb_2020_128259 crossref_primary_10_1016_j_apmt_2022_101584 crossref_primary_10_1016_j_ceramint_2019_12_257 crossref_primary_10_1039_D3NR03005A crossref_primary_10_1016_j_microc_2022_108216 crossref_primary_10_1016_j_pmatsci_2021_100887 crossref_primary_10_1016_j_mtener_2020_100521 crossref_primary_10_1002_celc_202400008 crossref_primary_10_1039_D3BM01114C crossref_primary_10_1016_j_mtphys_2021_100527 crossref_primary_10_1016_j_scs_2021_103046 crossref_primary_10_1016_j_nantod_2024_102202 crossref_primary_10_1016_j_cej_2024_155154 crossref_primary_10_1016_j_cclet_2024_109527 crossref_primary_10_1016_j_jallcom_2022_168162 crossref_primary_10_1080_15583724_2020_1729179 crossref_primary_10_1016_j_rio_2023_100438 crossref_primary_10_1016_j_cej_2020_127192 crossref_primary_10_1021_acs_jpcc_0c01039 crossref_primary_10_3390_molecules30030479 crossref_primary_10_1021_acsestengg_0c00174 crossref_primary_10_1016_j_cclet_2019_11_031 crossref_primary_10_1021_acs_chemmater_4c00966 crossref_primary_10_1016_j_nanoso_2021_100820 crossref_primary_10_1002_smtd_202401324 crossref_primary_10_1021_acsnano_1c06402 crossref_primary_10_1016_j_cej_2023_141928 crossref_primary_10_1002_qua_27094 crossref_primary_10_1016_j_jiec_2022_02_006 crossref_primary_10_1021_acsanm_0c02463 crossref_primary_10_1016_j_matdes_2023_112231 crossref_primary_10_1140_epjd_s10053_020_00020_4 crossref_primary_10_1002_smll_202305250 crossref_primary_10_1016_j_ccr_2023_215565 crossref_primary_10_1002_cey2_609 crossref_primary_10_1002_adma_202002661 crossref_primary_10_3390_nano14131088 crossref_primary_10_1002_adfm_202300299 crossref_primary_10_1016_j_materresbull_2024_112954 crossref_primary_10_1002_wnan_1925 crossref_primary_10_1021_acs_nanolett_3c01784 crossref_primary_10_3389_fsens_2022_1006749 crossref_primary_10_1021_acs_accounts_9b00064 crossref_primary_10_1149_1945_7111_ac59f5 crossref_primary_10_1039_D0NR01444C crossref_primary_10_1002_adfm_202008171 crossref_primary_10_1016_j_carbon_2022_11_033 crossref_primary_10_1016_j_cej_2023_141913 crossref_primary_10_2139_ssrn_4007870 crossref_primary_10_1016_j_ijbiomac_2025_140613 crossref_primary_10_1021_acsami_2c10551 crossref_primary_10_1002_slct_202203288 crossref_primary_10_1016_j_est_2023_107975 crossref_primary_10_1016_j_jiec_2019_12_003 crossref_primary_10_1016_j_aca_2022_339990 crossref_primary_10_1016_j_mtener_2021_100864 crossref_primary_10_1039_D1AN00178G crossref_primary_10_1016_j_solmat_2021_111558 crossref_primary_10_1039_D3GC01822A crossref_primary_10_1021_acs_langmuir_3c03607 crossref_primary_10_1016_j_ccr_2024_216355 crossref_primary_10_1016_j_jece_2024_113546 crossref_primary_10_1088_1361_6528_ab5609 crossref_primary_10_1039_D1NJ00244A crossref_primary_10_1016_j_addr_2022_114268 crossref_primary_10_1016_j_pmatsci_2022_100976 crossref_primary_10_1063_5_0033241 crossref_primary_10_1186_s12951_023_01809_2 crossref_primary_10_1002_adma_201805875 crossref_primary_10_1039_D2NR02807G crossref_primary_10_1186_s12951_022_01712_2 crossref_primary_10_1021_acsanm_3c04491 crossref_primary_10_1016_j_mtadv_2022_100339 crossref_primary_10_1021_acsnano_1c04423 crossref_primary_10_1002_aelm_201901064 crossref_primary_10_1002_smll_202311869 crossref_primary_10_1016_j_msec_2019_110000 crossref_primary_10_1002_aenm_202202303 crossref_primary_10_3390_diagnostics13040697 crossref_primary_10_1002_adhm_202102367 crossref_primary_10_1016_j_mattod_2025_02_004 crossref_primary_10_1038_s44222_023_00042_8 crossref_primary_10_3389_fimmu_2023_1241791 crossref_primary_10_1088_2053_1591_ac5076 crossref_primary_10_1021_acsnano_8b09327 crossref_primary_10_1002_adma_201804779 crossref_primary_10_1021_acsanm_4c00316 crossref_primary_10_1021_acs_nanolett_2c00930 crossref_primary_10_3390_catal10050495 crossref_primary_10_1016_j_chemosphere_2021_132923 crossref_primary_10_1016_j_cej_2020_126009 crossref_primary_10_1002_advs_202406324 crossref_primary_10_1016_j_matlet_2021_129355 crossref_primary_10_1016_j_mtnano_2022_100283 crossref_primary_10_1039_D4TC02819H crossref_primary_10_1149_1945_7111_ac2fc6 crossref_primary_10_3390_biomimetics5020024 crossref_primary_10_2139_ssrn_3992606 crossref_primary_10_1002_adhm_201900132 crossref_primary_10_1021_acsabm_1c00008 crossref_primary_10_1002_adfm_202315178 crossref_primary_10_1002_tcr_202200097 crossref_primary_10_1016_j_actbio_2020_12_035 crossref_primary_10_1111_jace_19939 crossref_primary_10_1039_D0CS00461H crossref_primary_10_1021_acsami_3c19308 crossref_primary_10_1039_D4TC04570J crossref_primary_10_1016_j_biomaterials_2020_120587 crossref_primary_10_1016_j_ceramint_2021_05_136 crossref_primary_10_1016_j_mattod_2019_05_017 crossref_primary_10_1002_adfm_202110267 crossref_primary_10_1002_adhm_202203028 crossref_primary_10_1016_j_ceramint_2023_01_097 crossref_primary_10_1021_acs_chemmater_4c02989 crossref_primary_10_1039_D1BM00378J crossref_primary_10_1002_advs_201902236 crossref_primary_10_1016_j_ceramint_2019_08_071 crossref_primary_10_1039_C9NR00168A crossref_primary_10_1002_anie_201913095 crossref_primary_10_1007_s40820_024_01418_0 crossref_primary_10_1016_j_diamond_2023_110201 crossref_primary_10_1016_j_cej_2023_142732 crossref_primary_10_1002_adfm_202104607 crossref_primary_10_3390_bios12090743 crossref_primary_10_3390_nano12071068 crossref_primary_10_1002_cbic_202000089 crossref_primary_10_1038_s41570_022_00384_8 crossref_primary_10_1016_j_foodchem_2024_141776 crossref_primary_10_1002_adma_201803432 crossref_primary_10_1557_s43578_021_00258_7 crossref_primary_10_1039_C8CS00618K crossref_primary_10_3390_molecules26216404 crossref_primary_10_1002_adfm_202100015 crossref_primary_10_1016_j_talanta_2021_122219 crossref_primary_10_1002_ppsc_202100159 crossref_primary_10_1021_acs_nanolett_8b04065 crossref_primary_10_1002_smtd_202201440 crossref_primary_10_3389_fchem_2024_1378985 crossref_primary_10_3390_en16041977 crossref_primary_10_1002_adhm_202001007 crossref_primary_10_1016_j_cej_2021_131914 crossref_primary_10_1021_acs_iecr_2c02042 crossref_primary_10_1016_j_msec_2020_110790 crossref_primary_10_1016_j_apmt_2023_102002 crossref_primary_10_1016_j_apsusc_2023_158454 crossref_primary_10_1021_acsami_4c23014 crossref_primary_10_1016_j_physe_2019_113559 crossref_primary_10_1021_acsnano_2c10103 crossref_primary_10_1039_D3MH01362F crossref_primary_10_1016_j_elecom_2020_106811 crossref_primary_10_1002_lpor_202200733 crossref_primary_10_1016_j_addr_2022_114422 crossref_primary_10_1021_accountsmr_2c00025 crossref_primary_10_1016_j_desal_2022_116314 crossref_primary_10_1021_acs_biomac_0c00147 crossref_primary_10_1002_chem_202000383 crossref_primary_10_1016_j_diamond_2023_109883 crossref_primary_10_1021_acs_chas_1c00051 crossref_primary_10_1016_j_matdes_2023_111867 crossref_primary_10_3390_bios13050542 crossref_primary_10_1016_j_jmat_2023_08_011 crossref_primary_10_1021_acsanm_9b01889 crossref_primary_10_3390_s22155589 crossref_primary_10_1002_anbr_202200123 crossref_primary_10_1016_j_molstruc_2024_139216 crossref_primary_10_2139_ssrn_4163721 crossref_primary_10_1039_D2NH00556E crossref_primary_10_1039_D1TC00327E crossref_primary_10_1016_j_saa_2025_126055 crossref_primary_10_1016_j_jmbbm_2024_106540 crossref_primary_10_1002_smtd_202300197 crossref_primary_10_1016_j_jmat_2023_08_003 crossref_primary_10_1186_s12951_023_02283_6 crossref_primary_10_1515_nanoph_2019_0550 crossref_primary_10_1016_j_carbon_2020_11_024 crossref_primary_10_1016_j_photonics_2020_100863 crossref_primary_10_1016_j_pdpdt_2022_102716 crossref_primary_10_1016_j_jmst_2023_12_010 crossref_primary_10_1039_D0BM01569E crossref_primary_10_1016_j_jallcom_2023_171007 crossref_primary_10_1021_acs_chemrev_2c00627 crossref_primary_10_1002_adfm_202312753 crossref_primary_10_1016_j_jece_2021_105028 crossref_primary_10_1016_j_cej_2022_141121 crossref_primary_10_1039_C9MH01139K crossref_primary_10_1002_eom2_12485 crossref_primary_10_1016_j_cej_2020_125786 crossref_primary_10_1039_D4CC00694A crossref_primary_10_1016_j_bioactmat_2022_08_025 crossref_primary_10_1002_cctc_202401355 crossref_primary_10_1039_D3BM00841J crossref_primary_10_1007_s11426_022_1376_1 crossref_primary_10_1021_acs_chemrev_4c00565 crossref_primary_10_1016_j_cej_2022_140288 crossref_primary_10_1021_acs_chemrestox_2c00154 crossref_primary_10_1016_j_cej_2023_142351 crossref_primary_10_1016_j_snb_2024_136215 crossref_primary_10_1039_D0CS00150C crossref_primary_10_1016_j_procbio_2024_11_015 crossref_primary_10_1016_j_vacuum_2021_110740 crossref_primary_10_1016_j_jechem_2020_02_032 crossref_primary_10_1038_s41467_019_10631_0 crossref_primary_10_1016_j_cplett_2024_141233 crossref_primary_10_1016_j_nanoso_2024_101193 crossref_primary_10_1016_j_cej_2021_132392 crossref_primary_10_1016_j_measurement_2021_110575 crossref_primary_10_1039_D1NR04008A crossref_primary_10_1002_adfm_202005223 crossref_primary_10_54033_cadpedv21n6_271 crossref_primary_10_3390_ijms23147909 crossref_primary_10_1088_2053_1583_ac9e68 crossref_primary_10_3390_bios10110185 crossref_primary_10_1002_adma_201903013 crossref_primary_10_1016_j_molliq_2023_123787 crossref_primary_10_3390_nano10071372 crossref_primary_10_1039_D3NA00187C crossref_primary_10_1002_wnan_1596 crossref_primary_10_1016_j_physe_2020_114328 crossref_primary_10_1002_adma_202305183 crossref_primary_10_1016_j_jece_2022_108663 crossref_primary_10_1002_cjoc_202000453 crossref_primary_10_1016_j_flatc_2025_100849 crossref_primary_10_1016_j_est_2023_108004 crossref_primary_10_1021_acsami_2c17729 crossref_primary_10_1021_acs_analchem_9b02040 crossref_primary_10_1002_anie_201916748 crossref_primary_10_1002_smm2_1207 crossref_primary_10_1002_advs_202406521 crossref_primary_10_1016_j_apsusc_2019_143889 crossref_primary_10_1039_D1CP02116H crossref_primary_10_1007_s10854_019_02682_2 crossref_primary_10_1016_j_ijbiomac_2024_137839 crossref_primary_10_1039_D1MA01199E crossref_primary_10_1016_j_triboint_2022_107500 crossref_primary_10_1016_j_cclet_2024_110195 crossref_primary_10_1007_s10800_021_01593_7 crossref_primary_10_1016_j_apmt_2024_102310 crossref_primary_10_1039_C9NR07886J crossref_primary_10_1039_D4CS00413B crossref_primary_10_1016_j_physrep_2019_12_006 crossref_primary_10_1016_j_jcis_2024_03_108 crossref_primary_10_1021_acs_energyfuels_1c01923 crossref_primary_10_1021_acsnano_2c12759 crossref_primary_10_1021_acs_est_3c02397 crossref_primary_10_1039_D1TB00410G crossref_primary_10_1021_acs_analchem_8b05343 crossref_primary_10_1039_D3TA04792J crossref_primary_10_2147_IJN_S444319 crossref_primary_10_1016_j_rinma_2021_100247 crossref_primary_10_1016_j_nantod_2022_101701 crossref_primary_10_1071_CH21216 crossref_primary_10_1016_j_mtcomm_2023_107368 crossref_primary_10_1002_adfm_202303668 crossref_primary_10_1016_j_inoche_2024_112457 crossref_primary_10_1039_D2NR01542K crossref_primary_10_26599_NR_2025_94907228 crossref_primary_10_1021_acs_iecr_3c02048 crossref_primary_10_1016_j_jallcom_2024_175172 crossref_primary_10_1016_j_ceramint_2022_03_165 crossref_primary_10_1557_s43577_023_00507_6 crossref_primary_10_1021_acsami_9b15774 crossref_primary_10_1016_j_aca_2019_12_069 crossref_primary_10_1021_acsomega_2c06704 crossref_primary_10_1021_acssuschemeng_0c01609 crossref_primary_10_1039_D0NR05214K crossref_primary_10_1039_D1CP04359E crossref_primary_10_1002_adma_202310320 crossref_primary_10_1016_j_est_2024_114067 crossref_primary_10_2139_ssrn_3906943 crossref_primary_10_1002_adfm_202101804 crossref_primary_10_1039_D3NA00744H crossref_primary_10_1039_D2TA01140A crossref_primary_10_1016_j_msec_2020_111367 crossref_primary_10_1021_acsanm_0c02945 crossref_primary_10_1021_acs_jpcc_1c03574 crossref_primary_10_1016_j_cej_2018_11_051 crossref_primary_10_1021_acsanm_3c01214 crossref_primary_10_1007_s11705_020_1997_7 crossref_primary_10_3390_chemosensors8040102 crossref_primary_10_1016_j_ccr_2019_213041 crossref_primary_10_1002_smll_202300283 crossref_primary_10_1002_smll_202305730 crossref_primary_10_1016_j_flatc_2023_100594 crossref_primary_10_1016_j_microc_2024_111495 crossref_primary_10_1007_s12274_020_3093_1 crossref_primary_10_1021_acsbiomaterials_3c01328 crossref_primary_10_1088_2515_7655_abf8f7 crossref_primary_10_1039_D0TC03410J crossref_primary_10_1002_adhm_201801137 crossref_primary_10_1016_j_porgcoat_2023_107779 crossref_primary_10_1002_open_202300313 crossref_primary_10_1002_adom_201900978 crossref_primary_10_1149_1945_7111_ad2d1a crossref_primary_10_1039_D1NR02224E crossref_primary_10_1016_j_jhazmat_2020_123562 crossref_primary_10_1016_j_jlumin_2023_119815 crossref_primary_10_1021_acssuschemeng_1c07715 crossref_primary_10_1039_D1TA04134G crossref_primary_10_1016_j_matdes_2021_109452 crossref_primary_10_1021_acs_analchem_9b03634 crossref_primary_10_1021_acsami_3c03991 crossref_primary_10_1039_C9NA00632J crossref_primary_10_1007_s41061_023_00420_1 crossref_primary_10_1021_acsanm_1c02783 crossref_primary_10_1021_jacs_4c11111 crossref_primary_10_1177_24723444241295415 crossref_primary_10_1039_C8CS00324F crossref_primary_10_1039_D4NA00931B crossref_primary_10_1002_bmm2_12066 crossref_primary_10_1016_j_est_2023_107448 crossref_primary_10_1016_j_molliq_2023_121768 crossref_primary_10_3390_bios11030059 crossref_primary_10_1021_acsnano_0c01005 crossref_primary_10_1016_j_compositesb_2024_111922 crossref_primary_10_1021_acsnano_3c01913 crossref_primary_10_1016_j_colsurfa_2019_124282 crossref_primary_10_3390_nano11030776 crossref_primary_10_1007_s00339_020_04235_5 crossref_primary_10_1002_inf2_12262 crossref_primary_10_1039_D1TB00193K crossref_primary_10_1016_j_adna_2024_06_001 crossref_primary_10_1016_j_matlet_2022_133020 crossref_primary_10_1016_j_ensm_2024_103873 crossref_primary_10_1016_j_cej_2021_130148 crossref_primary_10_1039_D3QM00965C crossref_primary_10_1021_acsnano_0c03697 crossref_primary_10_1039_D0TB00861C crossref_primary_10_1515_nanoph_2022_0550 crossref_primary_10_1039_D0NR04925E crossref_primary_10_1002_admi_202200991 crossref_primary_10_1039_D2RA07483D crossref_primary_10_1002_admt_202000325 crossref_primary_10_1186_s12645_022_00138_7 crossref_primary_10_1016_j_pecs_2023_101097 crossref_primary_10_1016_j_mtadv_2024_100512 crossref_primary_10_3390_ma14164453 crossref_primary_10_1016_j_ccr_2023_215616 crossref_primary_10_1016_j_jobab_2023_10_004 crossref_primary_10_1186_s11671_021_03510_5 crossref_primary_10_3390_nano11030559 crossref_primary_10_1021_acsenergylett_1c01656 crossref_primary_10_3390_membranes11110869 crossref_primary_10_1002_elt2_61 crossref_primary_10_1039_C9NR07616F crossref_primary_10_1016_j_flatc_2023_100548 crossref_primary_10_1007_s10118_024_3063_2 crossref_primary_10_1016_j_microc_2024_111466 crossref_primary_10_1016_j_nanoso_2020_100457 crossref_primary_10_7498_aps_73_20231432 crossref_primary_10_1002_adfm_202003437 crossref_primary_10_1016_j_ccr_2024_215907 crossref_primary_10_1016_j_jiec_2023_01_014 crossref_primary_10_1016_j_jechem_2022_09_046 crossref_primary_10_1016_j_mtnano_2021_100119 crossref_primary_10_1016_j_apsusc_2022_155583 crossref_primary_10_1002_aenm_201902253 crossref_primary_10_1016_j_jcis_2022_10_109 crossref_primary_10_1016_j_bioactmat_2024_04_033 crossref_primary_10_1039_D4CC01811G crossref_primary_10_1016_j_flatc_2023_100537 crossref_primary_10_1002_inf2_12052 crossref_primary_10_1039_D0CC07065C crossref_primary_10_1088_1361_6528_ac385d crossref_primary_10_1039_D3CS01024D crossref_primary_10_1016_j_ijbiomac_2024_129489 crossref_primary_10_1016_j_dyepig_2018_08_057 crossref_primary_10_1088_1361_6463_ab1e89 crossref_primary_10_1002_adhm_202304060 crossref_primary_10_1039_D0NR08900A crossref_primary_10_1016_j_ccr_2023_215275 crossref_primary_10_1016_j_saa_2024_124382 crossref_primary_10_1039_D1BM01604K crossref_primary_10_1186_s12951_022_01317_9 crossref_primary_10_1039_D0CS01487G crossref_primary_10_1007_s10853_021_06841_x crossref_primary_10_4103_1673_5374_379037 crossref_primary_10_1039_D4TB02834A crossref_primary_10_1007_s40820_022_00908_3 crossref_primary_10_1002_advs_202200296 crossref_primary_10_1021_acsnano_8b07224 crossref_primary_10_1515_nanoph_2022_0514 crossref_primary_10_1002_adma_202005858 crossref_primary_10_1021_acsnano_1c10836 crossref_primary_10_1016_j_bios_2021_113620 crossref_primary_10_1007_s00216_023_05054_2 crossref_primary_10_1039_D2QM00002D crossref_primary_10_1039_D4NR04139A crossref_primary_10_1088_1361_6528_ad61ed crossref_primary_10_1039_D2CC01694J crossref_primary_10_1002_nano_202200023 crossref_primary_10_1016_j_cej_2022_135012 crossref_primary_10_1016_j_ijhydene_2024_10_019 crossref_primary_10_1039_D0CS01138J crossref_primary_10_1016_j_desal_2024_117312 crossref_primary_10_1016_j_est_2023_107656 crossref_primary_10_1039_D0CP01990A crossref_primary_10_1186_s12951_022_01590_8 crossref_primary_10_1002_adfm_202411869 crossref_primary_10_1016_j_molliq_2021_115950 crossref_primary_10_1021_acsanm_1c03243 crossref_primary_10_1088_1674_4926_42_9_092601 crossref_primary_10_1021_acsami_1c13936 crossref_primary_10_1002_smsc_202100006 crossref_primary_10_1039_D1TA10783F crossref_primary_10_1016_j_ensm_2020_11_035 crossref_primary_10_1016_j_memsci_2020_119033 crossref_primary_10_1016_j_cclet_2023_108286 crossref_primary_10_1039_D0NR05746K crossref_primary_10_1016_j_vacuum_2023_112655 crossref_primary_10_1039_D3RA03340F crossref_primary_10_1021_acsanm_0c02577 crossref_primary_10_1039_D0MA00938E crossref_primary_10_3390_nano13020345 crossref_primary_10_1002_adma_202103148 crossref_primary_10_2139_ssrn_4168661 crossref_primary_10_1088_2515_7655_abdcab crossref_primary_10_1016_j_biomaterials_2025_123234 crossref_primary_10_1016_j_cej_2022_137691 crossref_primary_10_1016_j_mtcomm_2023_107711 crossref_primary_10_1016_j_microc_2024_111041 crossref_primary_10_1088_1402_4896_ad36f6 crossref_primary_10_1016_j_mcat_2023_113284 crossref_primary_10_1080_15583724_2024_2319585 crossref_primary_10_1039_D1QM00035G crossref_primary_10_1021_acsanm_4c03882 crossref_primary_10_1016_j_talanta_2021_122726 crossref_primary_10_1016_j_pmatsci_2023_101166 crossref_primary_10_1080_28378083_2024_2386526 crossref_primary_10_1039_D0NR07045A crossref_primary_10_1039_C8BM00642C crossref_primary_10_1016_j_apsusc_2022_154426 crossref_primary_10_1002_ange_201916748 crossref_primary_10_1002_admt_202301897 crossref_primary_10_1002_adma_202103393 crossref_primary_10_3390_bios13010030 crossref_primary_10_1007_s12274_023_5466_8 crossref_primary_10_1039_D3QM00216K crossref_primary_10_1016_j_mtphys_2024_101382 crossref_primary_10_1080_02670844_2020_1833277 crossref_primary_10_3390_molecules28062495 crossref_primary_10_1039_D3CS00087G crossref_primary_10_1002_cssc_201901746 crossref_primary_10_1016_j_jddst_2023_104569 crossref_primary_10_1016_j_colsurfb_2025_114568 |
Cites_doi | 10.1039/C7NR05997C 10.1039/C6CP01699E 10.1002/aelm.201600255 10.1039/C5NH00125K 10.1038/nmat4374 10.1039/C7EN01239J 10.1021/acsnano.7b07241 10.1021/acsnano.6b00181 10.1016/j.snb.2015.04.090 10.1038/natrevmats.2016.98 10.1021/acs.jpcc.7b08180 10.1016/j.snb.2016.05.062 10.1007/s11664-017-5311-5 10.1021/acs.nanolett.7b01035 10.1038/srep32049 10.1021/acs.chemmater.6b01275 10.1021/acsnano.7b02578 10.1021/acs.nanolett.6b04339 10.1209/0295-5075/111/26007 10.7150/thno.23369 10.1063/1.4948799 10.1002/adma.201703284 10.1002/adma.201504657 10.1002/adma.201102306 10.1002/adfm.201202502 10.1038/s41598-017-01714-3 10.1021/acssuschemeng.7b02695 10.1002/ange.201510432 10.1016/j.electacta.2017.07.084 10.1021/acs.jpcc.5b05426 10.1016/j.bios.2015.08.004 10.1021/acsnano.7b06476 10.1149/1.1392573 10.1021/acsami.7b11055 10.1038/srep36422 10.1039/C6TA04628B 10.1103/PhysRevB.91.201409 10.1016/j.carbon.2017.03.023 10.1021/acs.chemmater.7b02847 10.1021/acsnano.7b03129 10.1002/adhm.201701394 10.1021/acs.chemmater.7b02441 10.1016/j.commatsci.2017.08.016 10.1021/jacs.7b07818 10.1021/acsbiomaterials.7b00432 10.1021/acsami.5b03737 10.1021/acsami.7b13421 10.1002/adma.201604847 10.1021/acs.jpcc.7b08496 10.1039/C7NR06958H |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/c7cs00838d |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 5124 |
ExternalDocumentID | 29667670 10_1039_C7CS00838D c7cs00838d |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 2WC 4.4 53G 5GY 6J9 705 70~ 7~J 85S AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 ~02 0UZ 186 1TJ 3EH 6TJ 71~ 8WZ 9M8 A6W AAUTI AAYXX ABDPE ACHDF ACKIV ACPVT ACRPL ADNMO ADXHL AETEA AFFDN AFFNX AFRZK AGQPQ AHGXI AI. AIDUJ AKMSF ALSGL ALUYA ANBJS ANLMG AQHUZ ASPBG AVWKF BBWZM CAG CITATION EEHRC FA8 FEDTE HF~ HVGLF H~9 IDY J3G J3H L-8 MVM NDZJH R56 RCLXC RIG ROL RRXOS SC5 UQL VH1 WHG XJT XOL ZCG ZKB NPM YIN Z5M 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c436t-1f435a562ce87a08871bd4b5dc4d268e595d5eff7fce56d6cff677a20ccac7a53 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 02:56:17 EDT 2025 Fri Jul 11 09:54:57 EDT 2025 Sun Jun 29 16:24:05 EDT 2025 Wed Feb 19 02:44:38 EST 2025 Tue Jul 01 04:18:41 EDT 2025 Thu Apr 24 23:03:03 EDT 2025 Tue Dec 17 20:58:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-1f435a562ce87a08871bd4b5dc4d268e595d5eff7fce56d6cff677a20ccac7a53 |
Notes | Gang Han received his BSc and MSc degrees in Chemistry from Nanjing University. He obtained his PhD (2007) at the University of Massachusetts-Amherst. He then became a postdoctoral researcher working at the molecular foundry of the Lawrence Berkeley National Lab. He joined the faculty of the University of Massachusetts-Medical School (UMMS) in 2010 and currently is an associate professor in the Biochemistry and Molecular Pharmacology department at UMMS. His current research includes the investigation of luminescent molecules and nanoparticles in biophotonic and photonic applications. Jing Lin received her PhD in Organic Chemistry from Donghua University and Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences in 2010. Then she joined the PharmaResources (Shanghai) Co., Ltd as a group leader. After two years, she moved to the United States of America and spent 4 years as a postdoc at the University of Maryland and the National Institutes of Health (NIH). She joined the faculty of Shenzhen University (SZU) in 2016 and was promoted as a Distinguished Professor in 2018. Her research focuses on self-assembly of functional nanomaterials for diagnosis, treatment, and theranostics of diseases. Kai Huang obtained his BSc in materials chemistry (University of Science and Technology of China) and PhD in Biomedical Engineering (National University of Singapore) in 2011 and 2016 respectively. After graduation, he was a postdoctoral researcher in the University of Massachusetts Medical School (UMMS). He is now a joint postdoctoral fellow of UMMS and the Laboratory of Evolutionary Theranostics (LET) at Shenzhen University. His research interest focuses on the design and development of energy conversion nanomaterials for biomedical applications. Peng Huang received his PhD in Biomedical Engineering from Shanghai Jiao Tong University in 2012. Then he joined the Laboratory of Molecular Imaging and Nanomedicine (LOMIN) at the National Institutes of Health (NIH) as a postdoctoral fellow. In 2015, he moved to Shenzhen University (SZU) as a Distinguished Professor, Chief of Laboratory of Evolutionary Theranostics (LET), and Director of Department of Molecular Imaging. His research focuses on the design, synthesis, and biomedical applications of molecular imaging contrast agents, stimuli-responsive programmed targeting drug delivery systems, and activatable theranostics. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2300-5862 0000-0001-8693-2084 0000-0003-3651-7813 |
PMID | 29667670 |
PQID | 2070827598 |
PQPubID | 2047503 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2027068853 crossref_primary_10_1039_C7CS00838D rsc_primary_c7cs00838d proquest_miscellaneous_2220996876 crossref_citationtrail_10_1039_C7CS00838D proquest_journals_2070827598 pubmed_primary_29667670 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180717 |
PublicationDateYYYYMMDD | 2018-07-17 |
PublicationDate_xml | – month: 7 year: 2018 text: 20180717 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Satheeshkumar (C7CS00838D-(cit43)/*[position()=1]) 2016; 6 Nasrallah (C7CS00838D-(cit50)/*[position()=1]) 2018 Hu (C7CS00838D-(cit10)/*[position()=1]) 2016; 18 Feng (C7CS00838D-(cit17)/*[position()=1]) 2017; 46 Dai (C7CS00838D-(cit13)/*[position()=1]) 2017; 11 Dai (C7CS00838D-(cit12)/*[position()=1]) 2017; 29 Zha (C7CS00838D-(cit18)/*[position()=1]) 2015; 111 Anasori (C7CS00838D-(cit16)/*[position()=1]) 2016; 1 Chandrasekaran (C7CS00838D-(cit30)/*[position()=1]) 2017; 17 Kumar (C7CS00838D-(cit29)/*[position()=1]) 2017; 11 Yu (C7CS00838D-(cit19)/*[position()=1]) 2015; 7 Chen (C7CS00838D-(cit3)/*[position()=1]) 2017; 3 Liu (C7CS00838D-(cit49)/*[position()=1]) 2018; 8 Berdiyorov (C7CS00838D-(cit21)/*[position()=1]) 2016; 6 Zhou (C7CS00838D-(cit45)/*[position()=1]) 2017; 118 Lin (C7CS00838D-(cit4)/*[position()=1]) 2017; 139 Xu (C7CS00838D-(cit47)/*[position()=1]) 2016; 28 Lee (C7CS00838D-(cit35)/*[position()=1]) 2017; 9 Liu (C7CS00838D-(cit37)/*[position()=1]) 2015; 218 Shahzad (C7CS00838D-(cit40)/*[position()=1]) 2017; 5 Chen (C7CS00838D-(cit32)/*[position()=1]) 2017; 121 Naguib (C7CS00838D-(cit1)/*[position()=1]) 2011; 23 Lipatov (C7CS00838D-(cit15)/*[position()=1]) 2016; 2 Ghidiu (C7CS00838D-(cit8)/*[position()=1]) 2016; 28 Rasool (C7CS00838D-(cit20)/*[position()=1]) 2016; 10 Wang (C7CS00838D-(cit27)/*[position()=1]) 2017; 11 Wang (C7CS00838D-(cit36)/*[position()=1]) 2015; 74 Rasool (C7CS00838D-(cit44)/*[position()=1]) 2017; 7 Soundiraraju (C7CS00838D-(cit25)/*[position()=1]) 2017; 11 Han (C7CS00838D-(cit48)/*[position()=1]) 2018; 7 Barsoum (C7CS00838D-(cit6)/*[position()=1]) 1999; 146 Magne (C7CS00838D-(cit23)/*[position()=1]) 2015; 91 Zhu (C7CS00838D-(cit39)/*[position()=1]) 2017; 248 Zhou (C7CS00838D-(cit7)/*[position()=1]) 2016; 128 Xue (C7CS00838D-(cit26)/*[position()=1]) 2017; 29 Rakhi (C7CS00838D-(cit38)/*[position()=1]) 2016; 6 Anasori (C7CS00838D-(cit2)/*[position()=1]) 2017; 2 Yu (C7CS00838D-(cit9)/*[position()=1]) 2017; 9 Sarycheva (C7CS00838D-(cit24)/*[position()=1]) 2017; 121 Alhabeb (C7CS00838D-(cit5)/*[position()=1]) 2017; 29 Zhang (C7CS00838D-(cit22)/*[position()=1]) 2016; 4 Liu (C7CS00838D-(cit14)/*[position()=1]) 2017; 9 Chen (C7CS00838D-(cit42)/*[position()=1]) 2018; 10 Xu (C7CS00838D-(cit11)/*[position()=1]) 2015; 14 Guo (C7CS00838D-(cit41)/*[position()=1]) 2015; 119 Yang (C7CS00838D-(cit33)/*[position()=1]) 2017; 139 Khazaei (C7CS00838D-(cit31)/*[position()=1]) 2013; 23 Lin (C7CS00838D-(cit28)/*[position()=1]) 2017; 17 Lin (C7CS00838D-(cit46)/*[position()=1]) 2018; 30 Xiao (C7CS00838D-(cit34)/*[position()=1]) 2016; 235 |
References_xml | – volume: 9 start-page: 17859 year: 2017 ident: C7CS00838D-(cit9)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR05997C – volume: 18 start-page: 20256 year: 2016 ident: C7CS00838D-(cit10)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP01699E – volume: 2 start-page: 1600255 year: 2016 ident: C7CS00838D-(cit15)/*[position()=1] publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600255 – volume: 1 start-page: 227 year: 2016 ident: C7CS00838D-(cit16)/*[position()=1] publication-title: Nanoscale Horiz. doi: 10.1039/C5NH00125K – volume: 14 start-page: 1135 year: 2015 ident: C7CS00838D-(cit11)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4374 – year: 2018 ident: C7CS00838D-(cit50)/*[position()=1] publication-title: Environ. Sci.: Nano doi: 10.1039/C7EN01239J – volume: 11 start-page: 12696 year: 2017 ident: C7CS00838D-(cit13)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b07241 – volume: 10 start-page: 3674 year: 2016 ident: C7CS00838D-(cit20)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b00181 – volume: 218 start-page: 60 year: 2015 ident: C7CS00838D-(cit37)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2015.04.090 – volume: 2 start-page: 16098 year: 2017 ident: C7CS00838D-(cit2)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.98 – volume: 121 start-page: 19983 year: 2017 ident: C7CS00838D-(cit24)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b08180 – volume: 235 start-page: 103 year: 2016 ident: C7CS00838D-(cit34)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2016.05.062 – volume: 46 start-page: 2460 year: 2017 ident: C7CS00838D-(cit17)/*[position()=1] publication-title: J. Electron. Mater. doi: 10.1007/s11664-017-5311-5 – volume: 17 start-page: 3290 year: 2017 ident: C7CS00838D-(cit30)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01035 – volume: 6 start-page: 32049 year: 2016 ident: C7CS00838D-(cit43)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep32049 – volume: 28 start-page: 3507 year: 2016 ident: C7CS00838D-(cit8)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01275 – volume: 11 start-page: 7648 year: 2017 ident: C7CS00838D-(cit29)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b02578 – volume: 17 start-page: 384 year: 2017 ident: C7CS00838D-(cit28)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04339 – volume: 111 start-page: 26007 year: 2015 ident: C7CS00838D-(cit18)/*[position()=1] publication-title: Europhys. Lett. doi: 10.1209/0295-5075/111/26007 – volume: 8 start-page: 1648 year: 2018 ident: C7CS00838D-(cit49)/*[position()=1] publication-title: Theranostics doi: 10.7150/thno.23369 – volume: 6 start-page: 055105 year: 2016 ident: C7CS00838D-(cit21)/*[position()=1] publication-title: AIP Adv. doi: 10.1063/1.4948799 – volume: 30 start-page: 1703284 year: 2018 ident: C7CS00838D-(cit46)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201703284 – volume: 28 start-page: 3333 year: 2016 ident: C7CS00838D-(cit47)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504657 – volume: 23 start-page: 4248 year: 2011 ident: C7CS00838D-(cit1)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201102306 – volume: 23 start-page: 2185 year: 2013 ident: C7CS00838D-(cit31)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202502 – volume: 7 start-page: 1598 year: 2017 ident: C7CS00838D-(cit44)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-017-01714-3 – volume: 5 start-page: 11481 year: 2017 ident: C7CS00838D-(cit40)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b02695 – volume: 128 start-page: 5092 year: 2016 ident: C7CS00838D-(cit7)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201510432 – volume: 248 start-page: 46 year: 2017 ident: C7CS00838D-(cit39)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.07.084 – volume: 119 start-page: 20923 year: 2015 ident: C7CS00838D-(cit41)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b05426 – volume: 74 start-page: 1022 year: 2015 ident: C7CS00838D-(cit36)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.08.004 – volume: 11 start-page: 11559 year: 2017 ident: C7CS00838D-(cit27)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b06476 – volume: 146 start-page: 3919 year: 1999 ident: C7CS00838D-(cit6)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1392573 – volume: 9 start-page: 37184 year: 2017 ident: C7CS00838D-(cit35)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11055 – volume: 6 start-page: 36422 year: 2016 ident: C7CS00838D-(cit38)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep36422 – volume: 4 start-page: 12913 year: 2016 ident: C7CS00838D-(cit22)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04628B – volume: 91 start-page: 201409 year: 2015 ident: C7CS00838D-(cit23)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.91.201409 – volume: 118 start-page: 50 year: 2017 ident: C7CS00838D-(cit45)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2017.03.023 – volume: 29 start-page: 7633 year: 2017 ident: C7CS00838D-(cit5)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02847 – volume: 11 start-page: 8892 year: 2017 ident: C7CS00838D-(cit25)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b03129 – volume: 7 start-page: 1701394 year: 2018 ident: C7CS00838D-(cit48)/*[position()=1] publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201701394 – volume: 29 start-page: 8637 year: 2017 ident: C7CS00838D-(cit12)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02441 – volume: 139 start-page: 313 year: 2017 ident: C7CS00838D-(cit33)/*[position()=1] publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2017.08.016 – volume: 139 start-page: 16235 year: 2017 ident: C7CS00838D-(cit4)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07818 – volume: 3 start-page: 2293 year: 2017 ident: C7CS00838D-(cit3)/*[position()=1] publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.7b00432 – volume: 7 start-page: 13707 year: 2015 ident: C7CS00838D-(cit19)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03737 – volume: 9 start-page: 40077 year: 2017 ident: C7CS00838D-(cit14)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13421 – volume: 29 start-page: 1604847 year: 2017 ident: C7CS00838D-(cit26)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604847 – volume: 121 start-page: 25729 year: 2017 ident: C7CS00838D-(cit32)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b08496 – volume: 10 start-page: 1111 year: 2018 ident: C7CS00838D-(cit42)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR06958H |
SSID | ssj0011762 |
Score | 2.7020361 |
SecondaryResourceType | review_article |
Snippet | Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of M
n
+1
X
n
(
n
= 1-3), integrate the advantages of metallic... Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of M n+1 X n ( n = 1–3), integrate the advantages of metallic... Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of Mn+1Xn (n = 1-3), integrate the advantages of metallic... Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of Mn+1Xn (n = 1–3), integrate the advantages of metallic... Two-dimensional transition metal carbides and nitrides known as MXenes, with a general formula of Mₙ₊₁Xₙ (n = 1–3), integrate the advantages of metallic... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 519 |
SubjectTerms | Antibacterial materials Biomedical materials Biosensors carbides Carbon nitride Magnetic properties magnetism Medical imaging Metal carbides MXenes Nitrides Optical properties Physiochemistry precision medicine transition elements Transition metals |
Title | Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29667670 https://www.proquest.com/docview/2070827598 https://www.proquest.com/docview/2027068853 https://www.proquest.com/docview/2220996876 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gAviNsgMJARPLCHjNTxJXmcSscY3XiglSp4iOJLYNOUol6ExK_n2LGTABUavETtqZVGPp-PP8fH30HoZZnllbTZMxmteEx1mkAcZBmsUqTRXAKFpvY08tk5P5nR0zmbDwanvaylzVoeqh9bz5X8j1fBBn61p2T_wbPtTcEAn8G_cAUPw_V6Pv6-iLWV51-FrHGYeFwOlq0MbZU_yqW80KbRYYbBu3RfgFSezY3T6M-bdE13Br_RDehtaPeJayssENI8vYxpBwv_4vl9edEm-bhMgU9fF_WXy02X-uPrf4U504U_Z3pbepN_CzHMYqct2QuclCcxFY2W46HZYvPRloo-qmgvdkJ0yLcG9SS1mqhKqJUljJnupq6wXX_-oTieTSbFdDyf3kC7BJYMEPN2j8bTd5N2T2koXHnZ9qmCWG2av-7u_Ss9-WPNAQxkGSrDOAYyvYNu-6UDPmpwcBcNTH0P3RyFin330eff8IA7PGCHBxzwgAEPOOABv2rQcIABC7jDAu5j4QGaHY-no5PYF8-IFU35Oh5WQIRLYLfKZKK0c8lQaiqZVlQTnhmWM81MVYlKGcY1V1XFhShJAkNaiZKle2inXtTmEcJEAacDLsWJlDSRVrqSKWb5jYRxLWWEDkKfFcory9sCJ1eFy3BI82IkRh9d_76J0Iu27bdGT2Vrq_3Q9YUfb6uCwOyUEcHyLELP25-hi-0WV1mbxca2IcKWUWLpX9oQe1ycAw2I0MPGre2jkNzmfIskQnvg59bc4ePxNf76CbrVDZF9tLNebsxToK5r-cxj8idbRZrD |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+transition+metal+carbides+and+nitrides+%28MXenes%29+for+biomedical+applications&rft.jtitle=Chemical+Society+reviews&rft.au=Huang%2C+Kai&rft.au=Li%2C+Zhongjun&rft.au=Lin%2C+Jing&rft.au=Han%2C+Gang&rft.date=2018-07-17&rft.issn=1460-4744&rft.eissn=1460-4744&rft.volume=47&rft.issue=14&rft.spage=5109&rft_id=info:doi/10.1039%2Fc7cs00838d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |