Integrating Metabolomics and Gut Microbiota to Identify Key Biomarkers and Regulatory Pathways Underlying Metabolic Heterogeneity in Childhood Obesity

Background/Objectives: Individuals with childhood obesity exhibit significant metabolic heterogeneity, necessitating precise biomarkers for risk stratification and assessment. This multi-omics investigation characterizes metabolic and microbial signatures underlying divergent metabolic phenotypes in...

Full description

Saved in:
Bibliographic Details
Published inNutrients Vol. 17; no. 11; p. 1876
Main Authors Xia, Zhiwei, Li, Yan, Yin, Jiyong, Gong, Zhaolong, Sun, Jing, Shen, Shi, Yang, Yi, Liu, Tingting, Wang, Liyuan, Huo, Junsheng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.05.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background/Objectives: Individuals with childhood obesity exhibit significant metabolic heterogeneity, necessitating precise biomarkers for risk stratification and assessment. This multi-omics investigation characterizes metabolic and microbial signatures underlying divergent metabolic phenotypes in the context of pediatric obesity. Methods: We analyzed 285 Chinese children (5–7 years) stratified into five groups: wasting (WAS, n = 55), metabolically healthy/unhealthy and normal weight (MHWH, n = 54; MUWH, n = 67), and metabolically healthy/unhealthy obesity (MHO, n = 36; MUO, n = 73). Untargeted metabolomics (Orbitrap ID-X Tribrid™) and 16S rRNA sequencing were integrated with multivariate analyses (OPLS-DA with VIP > 1, FDR < 0.05; Maaslin 2 with TSS normalization and BH correction, FDR < 0.10). Results: Analysis identified 225 differential metabolites and 12 bacterial genera. The proportion of steroids and their derivatives among differential metabolites in the MUO/MHO group was significantly lower than that in the OVOB/NOR and OVOB/WAS groups (2.12% vs. 7.9–14.1%). MUO displayed elevated C17 sphinganine and LysoPC (O-18:0) levels but reduced PI (16:0/14:1) levels. In contrast, OVOB showed upregulated glycerol phospholipids (LPCs and PSs) and downregulated PE species (e.g., PE(16:0/16:0)) as well as gut microbiota dysbiosis characterized by a higher Firmicutes/Bacteroidetes (F/B) ratio (2.07 vs. 1.24 in controls, p = 0.009) and reduced α diversity (Ace index, Chao1 index, and Shannon index values were lower in the OVOB group, Shannon index: 2.96 vs. 3.45, p = 0.03). SCFA-producing genera were negatively correlated with the OVOB group, while positively associated with PE(16:0/16:0). Internal validation showed differential metabolites had potential predictive efficacy for MUO/MHO (AUC = 0.967) and OVOB/NOR (AUC = 0.888). Conclusions: We identified distinct lipid disruptions characterizing obesity subtypes, including steroid/terpene deficits and sphingolipid/ether lipid dysregulation in the MUO/MHO groups as well as phospholipid imbalance (↑LPC/PS↓PE) in the OVOB/NOR groups. The gut microbiota exhibited a profile characterized by low diversity, an increased F/B ratio, and a reduced abundance of SCFA-producing genera. These findings suggest potential biomarkers for childhood obesity stratification, though further validation is warranted.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-6643
2072-6643
DOI:10.3390/nu17111876