RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging

The magnetic field penetration, phase shift and power deposition in planar and cylindrical models of biological tissue exposed to a sinusoidal time-dependent magnetic field have been investigated theoretically over the frequency range 1 to 100 MHz. The results are based on measurements of the relati...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 23; no. 4; pp. 630 - 643
Main Authors Bottomley, P A, Andrew, E R
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.07.1978
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The magnetic field penetration, phase shift and power deposition in planar and cylindrical models of biological tissue exposed to a sinusoidal time-dependent magnetic field have been investigated theoretically over the frequency range 1 to 100 MHz. The results are based on measurements of the relative permittivity and resistivity dispersions of a variety of freshly excised rat tissue at 37 and 25 degrees C, and are analysed in terms of their implications for human body nuclear magnetic resonance (NMR) imaging. The results indicate that at NMR operating frequencies much greater than about 30 MHz, magnetic field amplitude and phase variations experienced by the nuclei may cause serious distortions in an image of a human torso. The maximum power deposition envisaged during an NMR imaging experiment on a human torso is likely to be comparable to existing long-term safe exposure levels, and will depend ultimately on the imaging technique and NMR frequency employed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9155
1361-6560
DOI:10.1088/0031-9155/23/4/006