Posttranslational modification of β-catenin is associated with pathogenic fibroblastic changes in bronchopulmonary dysplasia
Bronchopulmonary dysplasia (BPD) is a common complication of premature birth. The histopathology of BPD is characterized by an arrest of alveolarization with fibroblast activation. The Wnt/β-catenin signaling pathway is important in early lung development. When Wnt signaling is active, phosphorylati...
Saved in:
Published in | American journal of physiology. Lung cellular and molecular physiology Vol. 312; no. 2; pp. L186 - L195 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Bronchopulmonary dysplasia (BPD) is a common complication of premature birth. The histopathology of BPD is characterized by an arrest of alveolarization with fibroblast activation. The Wnt/β-catenin signaling pathway is important in early lung development. When Wnt signaling is active, phosphorylation of β-catenin by tyrosine kinases at activating sites, specifically at tyrosine 489 (Y489), correlates with nuclear localization of β-catenin. We examined fetal lung tissue, lung tissue from term newborns, and lung tissue from infants who died with BPD; we found nuclear β-catenin phosphorylation at Y489 in epithelial and mesenchymal cells in fetal tissue and BPD tissue, but not in the lungs of term infants. Using a 3D human organoid model, we found increased nuclear localization of β-catenin phosphorylated at Y489 (p-β-catenin
) after exposure to alternating hypoxia and hyperoxia compared with organoids cultured in normoxia. Exogenous stimulation of the canonical Wnt pathway in organoids was sufficient to cause nuclear localization of p-β-catenin
in normoxia and mimicked the pattern of α-smooth muscle actin (α-SMA) expression seen with fibroblastic activation from oxidative stress. Treatment of organoids with a tyrosine kinase inhibitor prior to cyclic hypoxia-hyperoxia inhibited nuclear localization of p-β-catenin
and prevented α-SMA expression by fibroblasts. Posttranslational phosphorylation of β-catenin is a transient feature of normal lung development. Moreover, the persistence of p-β-catenin
is a durable marker of fibroblast activation in BPD and may play an important role in BPD disease pathobiology. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1040-0605 1522-1504 |
DOI: | 10.1152/ajplung.00477.2016 |