Glial-Cell-Line-Derived Neurotrophic Factor Promotes Glioblastoma Cell Migration and Invasion via the SMAD2/3-SERPINE1-Signaling Axis
Glial-cell-line-derived neurotrophic factor (GDNF) is highly expressed and is involved in the malignant phenotype in glioblastomas (GBMs). However, uncovering its underlying mechanism for promoting GBM progression is still a challenging work. In this study, we found that serine protease inhibitor fa...
Saved in:
Published in | International journal of molecular sciences Vol. 25; no. 18; p. 10229 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.09.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Glial-cell-line-derived neurotrophic factor (GDNF) is highly expressed and is involved in the malignant phenotype in glioblastomas (GBMs). However, uncovering its underlying mechanism for promoting GBM progression is still a challenging work. In this study, we found that serine protease inhibitor family E member 1 (SERPINE1) was a potential downstream gene of GDNF. Further experiments confirmed that SERPINE1 was highly expressed in GBM tissues and cells, and its levels of expression and secretion were enhanced by exogenous GDNF. SERPINE1 knockdown inhibited the migration and invasion of GBM cells promoted by GDNF. Mechanistically, GDNF increased SERPINE1 by promoting the phosphorylation of SMAD2/3. In vivo experiments demonstrated that GDNF facilitated GBM growth and the expressions of proteins related to migration and invasion via SERPINE1. Collectively, our findings revealed that GDNF upregulated SERPINE1 via the SMAD2/3-signaling pathway, thereby accelerating GBM cell migration and invasion. The present work presents a new mechanism of GDNF, supporting GBM development. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms251810229 |