Full-wave analysis of piezoelectric boundary waves propagating along metallic grating sandwiched between two semi-infinite layers

This paper describes full-wave analysis of piezoelectric boundary acoustic waves (PBAWs) propagating along a metallic grating sandwiched between 2 semi-infinite layers. In the analysis, the finite element method (FEM) is used for the grating region while the spectral domain analysis (SDA) is applied...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 56; no. 4; pp. 806 - 811
Main Authors Yiliu Wang, Hashimoto, K.-y., Omori, T., Yamaguchi, M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper describes full-wave analysis of piezoelectric boundary acoustic waves (PBAWs) propagating along a metallic grating sandwiched between 2 semi-infinite layers. In the analysis, the finite element method (FEM) is used for the grating region while the spectral domain analysis (SDA) is applied for an isotropic overlay region as well as a piezoelectric substrate region. The combination of the FEM and SDA makes the numerical analysis very fast and precise. As an example, the analysis was made on the PBAWs propagating in an SiO 2 overlay/ Cu grating/rotated Y-cut LiNbO 3 structure. It is shown that both the shear-horizontal (SH) type and Rayleigh-type PBAWs are supported in the structure, and that their velocities are very close to each other. Thus spurious responses due to the Rayleigh-type PBAW should completely be suppressed for device implementation. Discussions are made in detail on the influence of Cu grating thickness, substrate rotation angle, and metallization ratio on excitation and propagation characteristics of the SH- and Rayleigh-type PBAWs.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2009.1103