Do heterotrimeric G proteins redistribute upon G protein-coupled receptor stimulation in platelets?
Previous studies have proposed that stimulation of G protein-coupled receptors can cause a redistribution of G proteins to other receptors. The redistribution would cause a greater functional sensitivity of unsensitized 'secondary' receptors toward their agonists. Using platelets as a mode...
Saved in:
Published in | Platelets (Edinburgh) Vol. 17; no. 6; pp. 397 - 404 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Informa UK Ltd
01.09.2006
Taylor & Francis |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Previous studies have proposed that stimulation of G protein-coupled receptors can cause a redistribution of G proteins to other receptors. The redistribution would cause a greater functional sensitivity of unsensitized 'secondary' receptors toward their agonists. Using platelets as a model system, we utilized a proximal signaling event, intracellular calcium mobilization, to determine if agonist stimulation of particular Gq-coupled receptors would result in increased sensitivity for stimulation of other Gq-coupled receptors. Platelets express three Gq-coupled receptors for thrombin, thromboxane A2, and ADP with different potencies. Varying concentrations of a primary agonist (PAR-1 agonist SFLLRN, or the TXA2 agonist U46619) was followed by a constant submaximal concentration of a secondary agonist (U46619, or the P2Y1 agonist ADP). We observed that initial stimulation by SFLLRN was followed by a decrease in the extent of secondary U46619 or ADP-mediated calcium mobilization in comparison to control responses (i.e. without primary stimulation). To extend these studies we examined calcium mobilization in platelets from mice that were either wild-type or homozygous null for the PAR-4 or P2Y1 receptors, hypothesizing that the loss of PAR-4 or P2Y1 receptors would cause redistribution of its Gαq proteins to other receptors, and elicit a greater response when stimulated with other agonists than in platelets from a wild-type mouse. However, our results showed almost identical levels of peak calcium between wild-type or PAR-4 null mice when stimulated with either ADP or U46619. Similar results were obtained for the P2Y1 null mice stimulated with AYPGKF or U46619. We conclude that stimulation of one Gq coupled receptor does not result in redistribution of Gq to other Gq-coupled receptors. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0953-7104 1369-1635 |
DOI: | 10.1080/09537100600757794 |