Modulation of event-related desynchronization during motor imagery with transcranial direct current stimulation (tDCS) in patients with chronic hemiparetic stroke

Electroencephalogram-based brain–computer interface (BCI) has been developed as a new neurorehabilitative tool for patients with severe hemiparesis. However, its application has been limited because of difficulty detecting stable brain signals from the affected hemisphere. It has been reported that...

Full description

Saved in:
Bibliographic Details
Published inExperimental brain research Vol. 221; no. 3; pp. 263 - 268
Main Authors Kasashima, Yuko, Fujiwara, Toshiyuki, Matsushika, Yayoi, Tsuji, Tetsuya, Hase, Kimitaka, Ushiyama, Junichi, Ushiba, Junichi, Liu, Meigen
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.09.2012
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Electroencephalogram-based brain–computer interface (BCI) has been developed as a new neurorehabilitative tool for patients with severe hemiparesis. However, its application has been limited because of difficulty detecting stable brain signals from the affected hemisphere. It has been reported that transcranial direct current stimulation (tDCS) can modulate event-related desynchronization (ERD) in healthy persons. The objective of this study was to test the hypothesis that anodal tDCS could modulate ERD in patients with severe hemiparetic stroke. The participants were six patients with chronic hemiparetic stroke (mean age, 56.8 ± 9.5 years; mean time from the onset, 70.0 ± 19.6 months; Fugl-Meyer Assessment upper extremity motor score, 30.8 ± 16.5). We applied anodal tDCS (10 min, 1 mA) and sham stimulation over the affected primary motor cortex in a random order. ERD of the mu rhythm (mu ERD) with motor imagery of extension of the affected finger was assessed before and after anodal tDCS and sham stimulation. Mu ERD of the affected hemisphere increased significantly after anodal tDCS, whereas it did not change after sham stimulation. Our results show that anodal tDCS can increase mu ERD in patients with hemiparetic stroke, indicating that anodal tDCS could be used as a conditioning tool for BCI in stroke patients.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-News-1
ObjectType-Feature-3
content type line 23
ObjectType-Feature-1
ISSN:0014-4819
1432-1106
DOI:10.1007/s00221-012-3166-9