Numerical modeling of formation damage by two-phase particulate transport processes during CO2 injection in deep heterogeneous porous media

Prediction of CO₂ injection performance in deep subsurface porous media relies on the ability of the well to maintain high flow rates of carbon dioxide during several decades typically without fracturing the host formation or damaging the well. Dynamics of solid particulate suspensions in permeable...

Full description

Saved in:
Bibliographic Details
Published inAdvances in water resources Vol. 34; no. 1; pp. 62 - 82
Main Authors Sbai, M.A., Azaroual, M.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier 01.01.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Prediction of CO₂ injection performance in deep subsurface porous media relies on the ability of the well to maintain high flow rates of carbon dioxide during several decades typically without fracturing the host formation or damaging the well. Dynamics of solid particulate suspensions in permeable media are recognized as one major factor leading to injection well plugging in sandstones. The invading supercritical liquid-like fluid can contain exogenous fine suspensions or endogenous particles generated in situ by physical and chemical interactions or hydrodynamic release mechanisms. Suspended solids can plug the pores possibly leading to formation damage and permeability reduction in the vicinity of the injector. In this study we developed a finite volume simulator to predict the injectivity decline near CO₂ injection wells and also for production wells in the context of enhanced oil recovery. The numerical model solves a system of two coupled sets of finite volume equations corresponding to the pressure–saturation two-phase flow, and a second subsystem of solute and particle convection–diffusion equations. Particle transport equations are subject to mechanistic rate laws of colloidal, hydrodynamic release from pore surfaces, blocking in pore bodies and pore throats, and interphase particle transfer. The model was validated against available laboratory experiments at the core scale. Example results reveal that lower CO₂ residual saturation and formation porosity enhance CO₂-wet particle mobility and clogging around sinks and production wells. We conclude from more realistic simulations with heterogeneous permeability spanning several orders of magnitude that the control mode of mobilization, capture of particles, and permeability reduction processes strongly depends on the type of permeability distribution and connectivity between injection and production wells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0309-1708
DOI:10.1016/j.advwatres.2010.09.009