Use of hydroxytelechelic cis-1,4-polyisoprene (HTPI) in the synthesis of polyurethanes (PUs). Part 1. Influence of molecular weight and chemical modification of HTPI on the mechanical and thermal properties of PUs
New telechelic cis-1,4-polyisoprene oligomers bearing an hydroxyl group at the end of the polyisoprene backbone and possessing controlled molecular weights were used as soft segments in the elaboration of polyurethane elastomers. Besides, the well defined hydroxytelechelic cis-1,4-polyisoprene (HTPI...
Saved in:
Published in | Polymer (Guilford) Vol. 46; no. 18; pp. 6869 - 6877 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
23.08.2005
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | New telechelic
cis-1,4-polyisoprene oligomers bearing an hydroxyl group at the end of the polyisoprene backbone and possessing controlled molecular weights were used as soft segments in the elaboration of polyurethane elastomers. Besides, the well defined hydroxytelechelic
cis-1,4-polyisoprene (HTPI) structure obtained through a controlled methodology, was chemically modified leading to hydrogenated and epoxidized oligomers based polyurethanes. The influence of the structural changes of these precursors on the polyurethanes properties have been studied. Thus, mechanical parameters as well as glass transition and mechanical transition temperature measurements indicated an increase in PUs hardness when the length of soft segment decreases and when the degree of epoxidized and hydrogenated isoprenic moieties increases. Moreover, based on thermogravimetric analysis (TGA), a linear relationship was established between the weight loss in the urethane stage degradation and the amount of hard segments in the PUs. Otherwise, the hydrogenated soft segments were found more thermally stable than the epoxidized and the non modified ones. By comparison with similar investigations developed from commercial oligodienes (PBHT R20 LM
® and EPOL
®), this study mainly showed that the PUs based on hydrogenated hydroxytelechelic
cis-1,4-polyisoprenes were more thermally stable and softer than the EPOL
® based analogues. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0032-3861 1873-2291 |
DOI: | 10.1016/j.polymer.2005.05.106 |