The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals

We introduce the Computational 2D Materials Database (C2DB), which organises a variety of structural, thermodynamic, elastic, electronic, magnetic, and optical properties of around 1500 two-dimensional materials distributed over more than 30 different crystal structures. Material properties are syst...

Full description

Saved in:
Bibliographic Details
Published in2d materials Vol. 5; no. 4; pp. 42002 - 42037
Main Authors Haastrup, Sten, Strange, Mikkel, Pandey, Mohnish, Deilmann, Thorsten, Schmidt, Per S, Hinsche, Nicki F, Gjerding, Morten N, Torelli, Daniele, Larsen, Peter M, Riis-Jensen, Anders C, Gath, Jakob, Jacobsen, Karsten W, Jørgen Mortensen, Jens, Olsen, Thomas, Thygesen, Kristian S
Format Journal Article
LanguageEnglish
Published IOP Publishing 07.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We introduce the Computational 2D Materials Database (C2DB), which organises a variety of structural, thermodynamic, elastic, electronic, magnetic, and optical properties of around 1500 two-dimensional materials distributed over more than 30 different crystal structures. Material properties are systematically calculated by state-of-the-art density functional theory and many-body perturbation theory ( and the Bethe-Salpeter equation for   250 materials) following a semi-automated workflow for maximal consistency and transparency. The C2DB is fully open and can be browsed online (http://c2db.fysik.dtu.dk) or downloaded in its entirety. In this paper, we describe the workflow behind the database, present an overview of the properties and materials currently available, and explore trends and correlations in the data. Moreover, we identify a large number of new potentially synthesisable 2D materials with interesting properties targeting applications within spintronics, (opto-)electronics, and plasmonics. The C2DB offers a comprehensive and easily accessible overview of the rapidly expanding family of 2D materials and forms an ideal platform for computational modeling and design of new 2D materials and van der Waals heterostructures.
Bibliography:2DM-102847.R1
ISSN:2053-1583
2053-1583
DOI:10.1088/2053-1583/aacfc1