Mutational Analysis of the Bovine Respiratory Syncytial Virus Nucleocapsid Protein Using a Minigenome System: Mutations That Affect Encapsidation, RNA Synthesis, and Interaction with the Phosphoprotein

The nucleocapsid (N) protein of bovine respiratory syncytial virus (BRSV) is a multifunctional protein that plays a central role in transcription and replication of viral genomic RNA. To investigate the domains and specific residues involved in different N activities, we generated a total of 27 dele...

Full description

Saved in:
Bibliographic Details
Published inVirology (New York, N.Y.) Vol. 270; no. 1; pp. 215 - 228
Main Authors Khattar, Sunil K., Yunus, Abdul S., Collins, Peter L., Samal, Siba K.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 25.04.2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The nucleocapsid (N) protein of bovine respiratory syncytial virus (BRSV) is a multifunctional protein that plays a central role in transcription and replication of viral genomic RNA. To investigate the domains and specific residues involved in different N activities, we generated a total of 27 deletion and 12 point mutants of the N protein. These mutants were characterized using an intracellular BRSV-CAT minigenome replication system for the ability to (1) direct minigenome RNA synthesis, (2) direct minigenome encapsidation, and (3) form a complex with the phosphoprotein (P). The mutations tested were defective in synthesis of RNA from the BRSV-CAT minigenome template with the exception of the following: a deletion involving the first N-terminal amino acid and mutations involving conservative substitution at the second amino acid and at certain internal cysteine residues. Micrococcal nuclease enzyme protection assays showed that mutations involving amino acids 1–364 of the 391-amino-acid N protein prevented minigenome encapsidation. Thus the BRSV N protein has a C-terminal, 27-amino-acid tail that is not required for encapsidation. Interestingly, two of the mutations that ablated encapsidation did not greatly affect RNA synthesis; the mutant involving deletion of the N-terminal amino acid and the mutant involving a substitution at position 2. This finding indicates that the formation of a nucleocapsid sufficient to protect the RNA from nuclease is not required for template function. Coimmunoprecipitation of N and P using N- or P-specific antiserum revealed two regions of the N protein that are important for association with the P protein: a central portion of 244–290 amino acids and a C-terminal portion of 338–364 amino acids.
Bibliography:http://www.sciencedirect.com/science/journal/00426822
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0042-6822
1096-0341
DOI:10.1006/viro.2000.0264