α-Lipoic acid induces elevated S-adenosylhomocysteine and depletes S-adenosylmethionine

Lipoic acid is a disulfhydryl-containing compound used in clinical medicine and in experimental models as an antioxidant. We developed a stable isotope dilution capillary gas chromatography/mass spectrometry assay for lipoic acid. We assayed a panel of the metabolites of transmethylation and transsu...

Full description

Saved in:
Bibliographic Details
Published inFree radical biology & medicine Vol. 47; no. 8; pp. 1147 - 1153
Main Authors Stabler, Sally P., Sekhar, Jeevan, Allen, Robert H., O'Neill, Heidi C., White, Carl W.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.10.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lipoic acid is a disulfhydryl-containing compound used in clinical medicine and in experimental models as an antioxidant. We developed a stable isotope dilution capillary gas chromatography/mass spectrometry assay for lipoic acid. We assayed a panel of the metabolites of transmethylation and transsulfuration 30 min after injecting 100 mg/kg lipoic acid in a rat model. Lipoic acid values rose 1000-fold in serum and 10-fold in liver. A methylated metabolite of lipoic acid was also detected but not quantitated. Lipoic acid injection caused a massive increase in serum S-adenosylhomocysteine and marked depletion of liver S-adenosylmethionine. Serum total cysteine was depleted but liver cysteine and glutathione were maintained. Serum total homocysteine doubled, with increases also in cystathionine, N,N-dimethylglycine, and α-aminobutyric acid. In contrast, after injection of 2-mercaptoethane sulfonic acid, serum total cysteine and homocysteine were markedly depleted and there were no effects on serum S-adenosylmethionine or S-adenosylhomocysteine. We conclude that large doses of lipoic acid displace sulfhydryls from binding sites, resulting in depletion of serum cysteine, but also pose a methylation burden with severe depletion of liver S-adenosylmethionine and massive release of S-adenosylhomocysteine. These changes may have previously unrecognized deleterious effects that should be investigated in both human disease and experimental models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0891-5849
1873-4596
1873-4596
DOI:10.1016/j.freeradbiomed.2009.07.019