Effects of ionizing radiation (neutrons/gamma rays) on plasma lipids and lipoproteins in rats

Male Wistar rats weighing 250 g were exposed to 4 Gy of neutrons/gamma radiation (3.33 Gy of neutrons and 0.66 Gy of gamma rays). After whole-body irradiation, plasma cholesterol and phospholipid levels increased up to 62 and 37%, respectively, at day 4 and then returned to control values 12 days af...

Full description

Saved in:
Bibliographic Details
Published inRadiation research Vol. 150; no. 1; p. 43
Main Authors Feurgard, C, Bayle, D, Guézingar, F, Sérougne, C, Mazur, A, Lutton, C, Aigueperse, J, Gourmelon, P, Mathé, D
Format Journal Article
LanguageEnglish
Published United States 01.07.1998
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Male Wistar rats weighing 250 g were exposed to 4 Gy of neutrons/gamma radiation (3.33 Gy of neutrons and 0.66 Gy of gamma rays). After whole-body irradiation, plasma cholesterol and phospholipid levels increased up to 62 and 37%, respectively, at day 4 and then returned to control values 12 days after irradiation. Plasma triglyceride concentrations decreased concomitantly with decreased food intake after irradiation but remained higher than in pair-fed control rats. Plasma lipoproteins were separated by ultracentrifugation on a density gradient (1.006-1.210 g/ml). Four days after irradiation, most of the cholesterol (62% compared to 31% in controls, P < 0.001) is transported by apolipoprotein E-rich high-density lipoproteins. At the same time, plasma levels of apolipoproteins B and E were increased by 28 and 65%, respectively, while those of apolipoproteins AI and AIV were reduced by 21 and 59%, respectively. While in the liver of irradiated rats the apolipoprotein B/E receptor number was not modified, the hydroxymethylglutaryl coenzyme A reductase activity was fivefold higher than in control pair-fed rats. Four days after irradiation, the susceptibility of lipoproteins to peroxidation, as measured by the formation of conjugated dienes in the presence of Cu2+, was markedly increased while plasma vitamin E levels were decreased, demonstrating that irradiation reduces antioxidant stores markedly. These results suggest that such modified lipoproteins could be involved in radiation-induced vascular damage.
ISSN:0033-7587
DOI:10.2307/3579644