Effects of hierarchical micro/nano-textured titanium surface features on osteoblast-specific gene expression

To investigate the influence of hierarchical hybrid micro/nano-textured titanium surface features on osteoblast differentiation. In this study, 3 different implant discs were produced: a hierarchical hybrid micro-/nanostructured titanium surface topography was modified using electrolytic etching (EE...

Full description

Saved in:
Bibliographic Details
Published inImplant dentistry Vol. 22; no. 6; p. 656
Main Authors Meng, Weiyan, Zhou, Yanmin, Zhang, Yanjing, Cai, Qing, Yang, Liming, Wang, Baixiang
Format Journal Article
LanguageEnglish
Published United States 01.12.2013
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:To investigate the influence of hierarchical hybrid micro/nano-textured titanium surface features on osteoblast differentiation. In this study, 3 different implant discs were produced: a hierarchical hybrid micro-/nanostructured titanium surface topography was modified using electrolytic etching (EE) technique, and a sandblasted, acid-etched (SLA) group and a machined (M) group were used as control groups. MG-63 cells were cultured on discs for 1 day to 7 days. The osteoblast response to the hierarchical hybrid micro-/nanostructured titanium surface was evaluated through the osteoblastic alkaline phosphatase (ALP) activity and gene (OCN, RUNX2, OPN, and Col-I) expression. On the first, third, fifth and seventh day, the ALP activity, OCN, RUNX2, OPN, and Col-I messenger RNA gene expression, levels of EE were higher in EE group than in M and SLA groups. Hierarchical hybrid micro-/nanostructured titanium surface has a favorable biocompatibility, which can promote osteoblast differentiation. It could possibly accelerate bone growth, promote bone formation at early stage, and guarantee the immediate loading and early stage loading in clinical practice.
ISSN:1538-2982
DOI:10.1097/01.id.0000434273.22605.78