Graphene oxide and H2 production from bioelectrochemical graphite oxidation
Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under a...
Saved in:
Published in | Scientific reports Vol. 5; no. 1; p. 16242 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.11.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H
2
were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO
2
and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H
2
and organic compounds are produced by microbial reduction of protons and CO
2,
respectively, a process known as microbial electrosynthesis (MES).
Pseudomonas
is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria
Clostridium carboxidivorans
is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O
2
sinkers. This new method provides a sustainable route for producing graphene materials and renewable H
2
at low cost and it may stimulate a new area of research in MES. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep16242 |