Modelling nitrogen loads at the catchment scale under the influence of land use

Land use data are essential for water quality models. Pollutant inputs to streams are indeed a direct function of human activities that can be represented, at least approximately, in terms of land use. Remote sensing is a valuable data source to determine the land use on a catchment. However the lan...

Full description

Saved in:
Bibliographic Details
Published inPhysics and chemistry of the earth. Parts A/B/C Vol. 29; no. 11; pp. 811 - 819
Main Authors Payraudeau, S, Cernesson, F, Tournoud, M.G, Beven, K.J
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2004
Elsevier [2002-....]
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Land use data are essential for water quality models. Pollutant inputs to streams are indeed a direct function of human activities that can be represented, at least approximately, in terms of land use. Remote sensing is a valuable data source to determine the land use on a catchment. However the land use data obtained by this kind of information are subject to significant uncertainties, including misclassification or categorical uncertainty. This paper presents a method to analyse the impact of the land use categorical uncertainty on the responses of a nitrogen load model at the outlet of a catchment. We use the POL model, a semi-distributed event-based model on a French Mediterranean rural catchment and we focus on agricultural land use. First, the sensitivity analysis realised by simulations considering a uniform land use on the catchment, shows a great sensitivity of the estimated load to the land use change. Second, the categorical land use uncertainty is analysed on a total nitrogen load prediction set calculated with randomly generated land use maps consistent with the confusion matrix that characterizes misclassification of land use. Thus, from 1% to 10% of misclassified agricultural area results in a variation of almost 40% on nitrogen loads for the three studied events. Misclassified areas explain from 46% to 75% of the variance of the estimated nitrogen load. These first results illustrate the importance of sensitivity and uncertainty analyses to improve the confidence of a water quality model and need to be extended to other input data sets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1474-7065
1873-5193
DOI:10.1016/j.pce.2004.05.008