Accelerated Charge-Discharge Cycling Test and Cycle Life Prediction Model for Supercapacitors in Alternative Battery Applications

Supercapacitors (SCs), which are mainly used in high-power applications, can be potential energy storage sources for alternative battery applications once their outstanding cycle life performance at wide temperature ranges is considered. Because the cycle life of SCs is inherently long, aging accele...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 59; no. 12; pp. 4704 - 4712
Main Authors Uno, M., Tanaka, K.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Supercapacitors (SCs), which are mainly used in high-power applications, can be potential energy storage sources for alternative battery applications once their outstanding cycle life performance at wide temperature ranges is considered. Because the cycle life of SCs is inherently long, aging acceleration and cycle life prediction are of primary importance for practical usage. In this paper, the feasibility of accelerated cycle life testing is investigated and a cycle life prediction model of SCs for alternative battery applications is established. Charge-discharge cycling tests were performed for SCs at various cycling conditions for 3.8 years. The resultant capacitance retention trends were linearly extrapolated with the square root of the number of cycles as the x-axis. Capacitance degradations were mainly influenced by temperature, thus implying that aging can be accelerated by elevating the temperature. Activation energy values of capacitance degradations were obtained from the Arrhenius equation to determine the acceleration factor. By combining the extrapolation and the acceleration factor, the cycle life prediction model was established. Experimental and predicted cycle life trends agreed well, indicating that the established cycle life prediction model is appropriate for SCs in alternative battery applications.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2011.2182018