Numerical evaluation of the representative volume element for random composites

The Representative Volume Element (RVE) plays a central role in the homogenization of random heterogeneous microstructures, especially for composite and porous materials, with a view to predicting their effective properties. A quantitative evaluation of its size is proposed in this work in linear el...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of mechanics, A, Solids Vol. 86; p. 104181
Main Authors El Moumen, A., Kanit, T., Imad, A.
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Masson SAS 01.03.2021
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Representative Volume Element (RVE) plays a central role in the homogenization of random heterogeneous microstructures, especially for composite and porous materials, with a view to predicting their effective properties. A quantitative evaluation of its size is proposed in this work in linear elasticity and linear thermal conductivity of random heterogeneous materials. A RVE can be associated with different physical and statistical properties of microstructures. The methodology is applied to specific two–phase microstructure–based random sets. Statistical parameters are introduced to study the variation in the RVE size versus volume fractions of components and the contrast in their properties. The key notion of the integral range is introduced to determine these variations. For a given desired precision, we can provide a minimal volume size for the computation of effective mechanical and thermal properties. Numerical simulations are performed to demonstrate that a volume exists which is statistically representative of random microstructures. This finding is an important component for homogenization–based multiscale modeling of materials. •A quantitative evaluation of RVE size is proposed in this work in linear elasticity and linear thermal conductivity of random heterogeneous materials.•The methodology is applied to specific two–phase microstructure–based random sets. Statistical parameters are introduced to study the variation in the RVE size versus volume fractions of components and the contrast in their properties.•Numerical simulations are performed to demonstrate that a volume exists which is statistically representative of random microstructures.•This finding is an important component for homogenization–based multiscale modeling of materials.
ISSN:0997-7538
1873-7285
DOI:10.1016/j.euromechsol.2020.104181