Beam splitter and beam bends based on self-collimation effect in two-dimensional photonic crystals
Basing on the self-collimation effect of photonic crystals, one-to-two beam splitter, beam bend and one-to-three beam splitter are, respectively, designed by introducing a different line defect along the same direction. From the equal-frequency contour plot which is calculated by the plane wave expa...
Saved in:
Published in | Journal of modern optics Vol. 56; no. 10; pp. 1159 - 1162 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis Group
10.06.2009
Taylor & Francis Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Basing on the self-collimation effect of photonic crystals, one-to-two beam splitter, beam bend and one-to-three beam splitter are, respectively, designed by introducing a different line defect along the same direction. From the equal-frequency contour plot which is calculated by the plane wave expansion method, we obtain the frequency and the propagate direction of the self-collimated beam. The self-collimated beam propagation in photonic crystals with different line defects is simulated by the two-dimensional finite-difference time-domain method with perfectly matched layer absorbing boundary conditions. The simulation results show that one-to-two beam splitter, beam bend and one-to-three beam splitter can be realized by appropriately arranging the line defect along the proper direction. Such devices can greatly enhance photonic crystals for use in high-density optical integrated circuits. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0950-0340 1362-3044 |
DOI: | 10.1080/09500340902957378 |