On the top eigenvalue of heavy-tailed random matrices

We study the statistics of the largest eigenvalue $\lambda _{{\rm max}}$ of $N \times N$ random matrices with IID entries of variance $1/N$, but with power law tails $P(M_{ij}) \sim |M_{ij}|^{-1-\mu }$. When $\mu > 4$, $\lambda _{{\rm max}}$ converges to 2 with Tracy-Widom fluctuations of order $...

Full description

Saved in:
Bibliographic Details
Published inEurophysics letters Vol. 78; no. 1; pp. 10001 - 10001 (5)
Main Authors Biroli, G, Bouchaud, J.-P, Potters, M
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.04.2007
EDP Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study the statistics of the largest eigenvalue $\lambda _{{\rm max}}$ of $N \times N$ random matrices with IID entries of variance $1/N$, but with power law tails $P(M_{ij}) \sim |M_{ij}|^{-1-\mu }$. When $\mu > 4$, $\lambda _{{\rm max}}$ converges to 2 with Tracy-Widom fluctuations of order $N^{-2/3}$, but with large finite N corrections. When $\mu < 4$, $\lambda _{{\rm max}}$ is of order $N^{2/\mu -1/2}$ and is governed by Fréchet statistics. The marginal case $\mu =4$ provides a new class of limiting distribution that we compute explicitly. We extend these results to sample covariance matrices, and show that extreme events may cause the largest eigenvalue to significantly exceed the Marčenko-Pastur edge.
Bibliography:ark:/67375/80W-62RZ4PPG-J
istex:AB06802D61E7D0F574FCBA6C6A8C2EE4539A15DE
publisher-ID:epl10178
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/78/10001