On the top eigenvalue of heavy-tailed random matrices
We study the statistics of the largest eigenvalue $\lambda _{{\rm max}}$ of $N \times N$ random matrices with IID entries of variance $1/N$, but with power law tails $P(M_{ij}) \sim |M_{ij}|^{-1-\mu }$. When $\mu > 4$, $\lambda _{{\rm max}}$ converges to 2 with Tracy-Widom fluctuations of order $...
Saved in:
Published in | Europhysics letters Vol. 78; no. 1; pp. 10001 - 10001 (5) |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.04.2007
EDP Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We study the statistics of the largest eigenvalue $\lambda _{{\rm max}}$ of $N \times N$ random matrices with IID entries of variance $1/N$, but with power law tails $P(M_{ij}) \sim |M_{ij}|^{-1-\mu }$. When $\mu > 4$, $\lambda _{{\rm max}}$ converges to 2 with Tracy-Widom fluctuations of order $N^{-2/3}$, but with large finite N corrections. When $\mu < 4$, $\lambda _{{\rm max}}$ is of order $N^{2/\mu -1/2}$ and is governed by Fréchet statistics. The marginal case $\mu =4$ provides a new class of limiting distribution that we compute explicitly. We extend these results to sample covariance matrices, and show that extreme events may cause the largest eigenvalue to significantly exceed the Marčenko-Pastur edge. |
---|---|
Bibliography: | ark:/67375/80W-62RZ4PPG-J istex:AB06802D61E7D0F574FCBA6C6A8C2EE4539A15DE publisher-ID:epl10178 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/78/10001 |