Dynamical manifestation of Hamiltonian monodromy
Hamiltonian monodromy —a topological property of the bundle of regular tori of a static Hamiltonian system which obstructs the existence of global action-angle variables— occurs in a number of integrable dynamical systems. Using as an example a simple integrable system of a particle in a circular bo...
Saved in:
Published in | Europhysics letters Vol. 83; no. 2; pp. 24003 - 24003 (6) |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.07.2008
EDP Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hamiltonian monodromy —a topological property of the bundle of regular tori of a static Hamiltonian system which obstructs the existence of global action-angle variables— occurs in a number of integrable dynamical systems. Using as an example a simple integrable system of a particle in a circular box with quadratic potential barrier, we describe a time-dependent process which shows that monodromy in the static system leads to interesting dynamical effects. |
---|---|
Bibliography: | istex:401EA714506E91C7D08CBCDFC7955A0788B5CE6D publisher-ID:epl11081 ark:/67375/80W-6N0X5695-B ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/83/24003 |