Comparison Between QT and Corrected QT Interval Assessment by an Apple Watch With the AccurBeat Platform and by a 12‑Lead Electrocardiogram With Manual Annotation: Prospective Observational Study

Background Abnormal prolongation or shortening of the QT interval is associated with increased risk for ventricular arrhythmias and sudden cardiac death. For continuous monitoring, widespread use, and prevention of cardiac events, advanced wearable technologies are emerging as promising surrogates f...

Full description

Saved in:
Bibliographic Details
Published inJMIR formative research Vol. 6; no. 9; p. e41241
Main Authors Chokshi, Sara, Tologonova, Gulzhan, Calixte, Rose, Yadav, Vandana, Razvi, Naveed, Lazar, Jason, Kachnowski, Stan
Format Journal Article
LanguageEnglish
Published Toronto JMIR Publications 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background Abnormal prolongation or shortening of the QT interval is associated with increased risk for ventricular arrhythmias and sudden cardiac death. For continuous monitoring, widespread use, and prevention of cardiac events, advanced wearable technologies are emerging as promising surrogates for conventional 12‑lead electrocardiogram (ECG) QT interval assessment. Previous studies have shown a good agreement between QT and corrected QT (QTc) intervals measured on a smartwatch ECG and a 12-lead ECG, but the clinical accuracy of computerized algorithms for QT and QTc interval measurement from smartwatch ECGs is unclear. Objective The prospective observational study compared the smartwatch-recorded QT and QTc assessed using AccurKardia’s AccurBeat platform with the conventional 12‑lead ECG annotated manually by a cardiologist. Methods ECGs were collected from healthy participants (without any known cardiovascular disease) aged >22 years. Two consecutive 30-second ECG readings followed by (within 15 minutes) a 10-second standard 12-lead ECG were recorded for each participant. Characteristics of the participants were compared by sex using a 2-sample t test and Wilcoxon rank sum test. Statistical comparisons of heart rate (HR), QT interval, and QTc interval between the platform and the 12-lead ECG, ECG lead I, and ECG lead II were done using the Wilcoxon sign rank test. Linear regression was used to predict QTc and QT intervals from the ECG based on the platform’s QTc/QT intervals with adjustment for age, sex, and difference in HR measurement. The Bland-Altman method was used to check agreement between various QT and QTc interval measurements. Results A total of 50 participants (32 female, mean age 46 years, SD 1 year) were included in the study. The result of the regression model using the platform measurements to predict the 12-lead ECG measurements indicated that, in univariate analysis, QT/QTc intervals from the platform significantly predicted QT/QTc intervals from the 12-lead ECG, ECG lead I, and ECG lead II, and this remained significant after adjustment for sex, age, and change in HR. The Bland-Altman plot results found that 96% of the average QTc interval measurements between the platform and QTc intervals from the 12-lead ECG were within the 95% confidence limit of the average difference between the two measurements, with a mean difference of –10.5 (95% limits of agreement –71.43, 50.43). A total of 94% of the average QT interval measurements between the platform and the 12-lead ECG were within the 95% CI of the average difference between the two measurements, with a mean difference of –6.3 (95% limits of agreement –54.54, 41.94). Conclusions QT and QTc intervals obtained by a smartwatch coupled with the platform’s assessment were comparable to those from a 12-lead ECG. Accordingly, with further refinements, remote monitoring using this technology holds promise for the identification of QT interval prolongation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2561-326X
2561-326X
DOI:10.2196/41241