A Proton Conductive Porous Framework of an 18‐Crown‐6‐Ether Derivative Networked by Rigid Hydrogen Bonding Modules
A rigid hydrogen‐bonded organic framework (HOF) was constructed from a C3‐symmetric hexatopic carboxylic acid with a hydrophilic 18‐crown‐6‐ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4’‐dicarboxy‐o‐terphenyl moieties in the...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 45; pp. e202211686 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
07.11.2022
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A rigid hydrogen‐bonded organic framework (HOF) was constructed from a C3‐symmetric hexatopic carboxylic acid with a hydrophilic 18‐crown‐6‐ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4’‐dicarboxy‐o‐terphenyl moieties in the periphery yielded a rigid layered porous framework through directional intermolecular hydrogen bonding. Interestingly, the HOF possesses 1D channels with bottleneck composed of 18C6 rings. The HOF shows proton conductivity (1.12×10−7 S cm−1) through Grotthuss mechanism (Ea=0.27 eV) under 98 %RH. The present unique water channel structure provides an inspiration to create molecular porous materials.
A porous hydrogen‐bonded framework (HOF) was constructed from a 18‐crown‐6‐ether (18C6) derivative. Although a 18C6 macrocycle is flexible and has many possible conformations, directional intermolecular hydrogen bonds of 4,4′‐dicarboxy‐o‐terphenyl modules in the periphery of the 18C6 allowed to form a rigid HOF with 1D channels with a bottleneck composed of 18C6 rings. The wet HOF shows proton conductivity (1.12×10−7 S cm−1) through a Grotthuss mechanism (Ea=0.27 eV) under 98 %RH. |
---|---|
AbstractList | A rigid hydrogen‐bonded organic framework (HOF) was constructed from a C3‐symmetric hexatopic carboxylic acid with a hydrophilic 18‐crown‐6‐ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4’‐dicarboxy‐o‐terphenyl moieties in the periphery yielded a rigid layered porous framework through directional intermolecular hydrogen bonding. Interestingly, the HOF possesses 1D channels with bottleneck composed of 18C6 rings. The HOF shows proton conductivity (1.12×10−7 S cm−1) through Grotthuss mechanism (Ea=0.27 eV) under 98 %RH. The present unique water channel structure provides an inspiration to create molecular porous materials.
A porous hydrogen‐bonded framework (HOF) was constructed from a 18‐crown‐6‐ether (18C6) derivative. Although a 18C6 macrocycle is flexible and has many possible conformations, directional intermolecular hydrogen bonds of 4,4′‐dicarboxy‐o‐terphenyl modules in the periphery of the 18C6 allowed to form a rigid HOF with 1D channels with a bottleneck composed of 18C6 rings. The wet HOF shows proton conductivity (1.12×10−7 S cm−1) through a Grotthuss mechanism (Ea=0.27 eV) under 98 %RH. A rigid hydrogen-bonded organic framework (HOF) was constructed from a C3 -symmetric hexatopic carboxylic acid with a hydrophilic 18-crown-6-ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4'-dicarboxy-o-terphenyl moieties in the periphery yielded a rigid layered porous framework through directional intermolecular hydrogen bonding. Interestingly, the HOF possesses 1D channels with bottleneck composed of 18C6 rings. The HOF shows proton conductivity (1.12×10-7 S cm-1 ) through Grotthuss mechanism (Ea =0.27 eV) under 98 %RH. The present unique water channel structure provides an inspiration to create molecular porous materials.A rigid hydrogen-bonded organic framework (HOF) was constructed from a C3 -symmetric hexatopic carboxylic acid with a hydrophilic 18-crown-6-ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4'-dicarboxy-o-terphenyl moieties in the periphery yielded a rigid layered porous framework through directional intermolecular hydrogen bonding. Interestingly, the HOF possesses 1D channels with bottleneck composed of 18C6 rings. The HOF shows proton conductivity (1.12×10-7 S cm-1 ) through Grotthuss mechanism (Ea =0.27 eV) under 98 %RH. The present unique water channel structure provides an inspiration to create molecular porous materials. A rigid hydrogen‐bonded organic framework (HOF) was constructed from a C 3 ‐symmetric hexatopic carboxylic acid with a hydrophilic 18‐crown‐6‐ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4’‐dicarboxy‐ o ‐terphenyl moieties in the periphery yielded a rigid layered porous framework through directional intermolecular hydrogen bonding. Interestingly, the HOF possesses 1D channels with bottleneck composed of 18C6 rings. The HOF shows proton conductivity (1.12×10 −7 S cm −1 ) through Grotthuss mechanism ( E a =0.27 eV) under 98 %RH. The present unique water channel structure provides an inspiration to create molecular porous materials. A rigid hydrogen‐bonded organic framework (HOF) was constructed from a C3‐symmetric hexatopic carboxylic acid with a hydrophilic 18‐crown‐6‐ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4’‐dicarboxy‐o‐terphenyl moieties in the periphery yielded a rigid layered porous framework through directional intermolecular hydrogen bonding. Interestingly, the HOF possesses 1D channels with bottleneck composed of 18C6 rings. The HOF shows proton conductivity (1.12×10−7 S cm−1) through Grotthuss mechanism (Ea=0.27 eV) under 98 %RH. The present unique water channel structure provides an inspiration to create molecular porous materials. A rigid hydrogen-bonded organic framework (HOF) was constructed from a C-3-symmetric hexatopic carboxylic acid with a hydrophilic 18-crown-6-ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4'-dicarboxy-o-terphenyl moieties in the periphery yielded a rigid layered porous framework through directional intermolecular hydrogen bonding. Interestingly, the HOF possesses 1D channels with bottleneck composed of 18C6 rings. The HOF shows proton conductivity (1.12x10(-7) S cm(-1)) through Grotthuss mechanism (E-a=0.27 eV) under 98 %RH. The present unique water channel structure provides an inspiration to create molecular porous materials. |
Author | Huang, Rui‐Kang Hisaki, Ichiro Noro, Shin‐ichiro Chen, Xin Takahashi, Kiyonori Nakamura, Takayoshi |
Author_xml | – sequence: 1 givenname: Xin surname: Chen fullname: Chen, Xin organization: Hokkaido University – sequence: 2 givenname: Rui‐Kang surname: Huang fullname: Huang, Rui‐Kang organization: Hokkaido University – sequence: 3 givenname: Kiyonori surname: Takahashi fullname: Takahashi, Kiyonori organization: Hokkaido University – sequence: 4 givenname: Shin‐ichiro surname: Noro fullname: Noro, Shin‐ichiro organization: Hokkaido University – sequence: 5 givenname: Takayoshi surname: Nakamura fullname: Nakamura, Takayoshi email: tnaka@es.hokudai.ac.jp organization: Hokkaido University – sequence: 6 givenname: Ichiro orcidid: 0000-0002-8170-5605 surname: Hisaki fullname: Hisaki, Ichiro email: i.hisaki.es@osaka-u.ac.jp organization: Osaka University |
BookMark | eNqNkstuEzEUQC1URB-wZW2JDRJKuLbHj1mGIaWVSqkQrEfOzJ3gMrFbe6YhOz6Bb-RLcEgAqRICS9b14pz7sO4xOfDBIyFPGUwZAH9pvcMpB84ZU0Y9IEdMcjYRWouD_C6EmGgj2SE5Tuk688aAekQOhWJQlIYdkS8zehXDEDytgm_HZnB3SK9CDGOip9GucB3iZxo6aj1l5vvXb1UMa5-jync-fMJIX2N0d_aneInDlseWLjb0vVu6lp5t2hiW6OmrnN_5JX0b2rHH9Jg87Gyf8Mk-npCPp_MP1dnk4t2b82p2MWkKUaiJlpbp1rRohCkVZyCkahQCSJQGlWpY14FGUYDiSmvkTHWlbKFblNxCnv-EPN_lvYnhdsQ01CuXGux76zEPWXPNCiWVkjKjz-6h12GMPneXKQEFB1OwTJkdtcZF6FLj0DdY30S3snFTA4BRopQatodVbsg_E3wVRj9k9cX_q5kudnQTQ0oRu7rZZxuidX3NoN6uQL1dgfr3CmRtek_7VeCvQrnvyvW4-Qddzy7P53_cHy5Mw1s |
CitedBy_id | crossref_primary_10_1039_D3QI01473H crossref_primary_10_1002_smll_202206999 crossref_primary_10_1002_adfm_202403635 crossref_primary_10_1016_j_ccr_2024_215760 crossref_primary_10_1002_anie_202504396 crossref_primary_10_1002_ange_202217903 crossref_primary_10_1002_chem_202400079 crossref_primary_10_1039_D2TA09379K crossref_primary_10_1002_ange_202304313 crossref_primary_10_1007_s11426_024_2377_9 crossref_primary_10_1002_smll_202310797 crossref_primary_10_1021_prechem_4c00019 crossref_primary_10_1002_anie_202217903 crossref_primary_10_1002_adma_202417374 crossref_primary_10_1038_s44160_025_00738_2 crossref_primary_10_1038_s41467_024_47058_1 crossref_primary_10_1002_chem_202303618 crossref_primary_10_1002_zaac_202300084 crossref_primary_10_1039_D4CE01214C crossref_primary_10_1002_adfm_202413107 crossref_primary_10_1002_ange_202504396 crossref_primary_10_1016_j_jcis_2024_07_086 crossref_primary_10_1002_anie_202304313 crossref_primary_10_1038_s41428_023_00840_2 crossref_primary_10_1063_5_0238032 |
Cites_doi | 10.1039/C8CS00155C 10.1002/ange.201909732 10.1021/ja9915899 10.1039/C8CE00655E 10.1021/acs.cgd.6b00924 10.1002/ange.200902116 10.1021/acs.cgd.0c00235 10.1039/C1CS15220C 10.1002/anie.202101163 10.1107/S0108767389011189 10.1002/anie.201604534 10.1021/ja01002a035 10.1107/S0108270101016109 10.1039/C5DT04316F 10.1002/anie.201411438 10.1021/jp050133c 10.1021/cr020080k 10.1021/ja00986a052 10.1002/anie.201902147 10.1039/C2CE26401C 10.1039/C6CS00619A 10.1039/D1CS00004G 10.1021/cr900002h 10.1021/cr00026a001 10.1002/ange.201800423 10.1039/C5CS00934K 10.1021/cr970081q 10.1002/ange.201404265 10.1021/accountsmr.0c00019 10.1002/ange.201604534 10.1002/ange.202101163 10.1021/jacs.2c02598 10.1021/jacs.8b12124 10.1021/acsenergylett.1c01681 10.1002/ange.201411438 10.1039/C9NJ02025J 10.1002/anie.201800423 10.1039/D0CE01578D 10.1021/acsenergylett.1c02045 10.1107/S090744490804362X 10.1002/anie.201404265 10.1039/D1MA00411E 10.1021/jacs.6b02968 10.1021/jacs.0c06473 10.1002/anie.200902116 10.1039/c8cs00155c 10.1039/c9nj02025j 10.1039/d1ma00411e 10.1039/d0ce01578d 10.1039/c2ce26401c 10.1039/d1cs00004g 10.1039/c5cs00934k 10.1039/c1cs15220c 10.1039/c6cs00619a 10.1039/c8ce00655e 10.1039/c5dt04316f |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM AHQBO BLEPL DTL EGQ 7TM K9. 7X8 |
DOI | 10.1002/anie.202211686 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) Web of Science |
Database_xml | – sequence: 1 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 000863957000001 10_1002_anie_202211686 ANIE202211686 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science funderid: JP19H04557, JP20H05862, JP21H01919, JP21K18961, JP21H05485 – fundername: Chinese Scholarship Council – fundername: JSPS, Japan; Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); Japan Society for the Promotion of Science – fundername: Chinese Scholarship Council (CSC); China Scholarship Council – fundername: Grants-in-Aid for Scientific Research; Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); Japan Society for the Promotion of Science; Grants-in-Aid for Scientific Research (KAKENHI) grantid: 22K14655; 22H00311; 20H05862; 21H01919; 21K18961; 21H05485 – fundername: MEXT; Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) – fundername: KAKENHI; Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); Japan Society for the Promotion of Science; Grants-in-Aid for Scientific Research (KAKENHI) grantid: JP19H04557; JP20H05862; JP21K18961; JP21H01919; JP21H05485 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4346-75a17d8de83896210356c6e005e58e66c1ff07e34062677e216f95d0fb92a0433 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 20 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000863957000001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 01:17:51 EDT 2025 Fri Jul 25 10:13:55 EDT 2025 Fri Aug 29 16:07:02 EDT 2025 Wed Jul 09 18:16:29 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Tue Jul 01 01:18:29 EDT 2025 Wed Jan 22 16:32:05 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Keywords | DESIGN Proton Conduction BONDED ORGANIC FRAMEWORKS COMPLEXES Crystal Engineering CROWN-ETHERS MOTIF Hydrogen Bond Crown Ether Porous Framework |
Language | English |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c4346-75a17d8de83896210356c6e005e58e66c1ff07e34062677e216f95d0fb92a0433 |
Notes | KAKEN ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8170-5605 |
OpenAccessLink | https://hdl.handle.net/11094/92731 |
PMID | 36104981 |
PQID | 2730420841 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | webofscience_primary_000863957000001CitationCount crossref_citationtrail_10_1002_anie_202211686 crossref_primary_10_1002_anie_202211686 wiley_primary_10_1002_anie_202211686_ANIE202211686 webofscience_primary_000863957000001 proquest_miscellaneous_2714656655 proquest_journals_2730420841 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 7, 2022 |
PublicationDateYYYYMMDD | 2022-11-07 |
PublicationDate_xml | – month: 11 year: 2022 text: November 7, 2022 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationYear | 2022 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2021; 6 2004; 104 2009; 65 2021; 2 2020; 20 2009 2009; 48 121 2020; 142 1967; 89 2017; 46 1999; 121 2021; 50 2019; 141 2016; 16 2018; 20 2019 2019; 58 131 2022; 144 2013; 15 2016 2016; 55 128 1990; 46 2020; 1 2019; 43 2018 2018; 57 130 2019; 48 2021 2021; 60 133 1999; 99 2005; 109 2015 2015; 54 127 2016; 138 2020; 22 1994; 94 2009; 109 2001; 57 2016; 45 2012; 41 e_1_2_3_14_3 e_1_2_3_16_1 e_1_2_3_39_1 e_1_2_3_37_2 e_1_2_3_4_1 e_1_2_3_2_2 e_1_2_3_18_2 e_1_2_3_39_2 e_1_2_3_12_1 e_1_2_3_35_1 e_1_2_3_8_2 e_1_2_3_33_2 e_1_2_3_6_2 e_1_2_3_14_2 e_1_2_3_31_3 e_1_2_3_10_2 e_1_2_3_31_2 e_1_2_3_26_2 e_1_2_3_28_2 e_1_2_3_22_2 e_1_2_3_45_1 e_1_2_3_24_2 e_1_2_3_47_1 e_1_2_3_41_2 e_1_2_3_20_1 e_1_2_3_41_1 e_1_2_3_43_1 e_1_2_3_1_1 e_1_2_3_5_2 e_1_2_3_15_2 e_1_2_3_38_2 e_1_2_3_3_2 e_1_2_3_17_2 e_1_2_3_17_3 e_1_2_3_19_1 e_1_2_3_9_2 e_1_2_3_11_2 e_1_2_3_34_1 e_1_2_3_7_2 e_1_2_3_13_2 e_1_2_3_36_1 e_1_2_3_30_1 e_1_2_3_32_2 e_1_2_3_40_1 e_1_2_3_27_1 e_1_2_3_29_2 e_1_2_3_46_1 e_1_2_3_23_2 e_1_2_3_44_2 e_1_2_3_23_3 e_1_2_3_25_2 e_1_2_3_42_1 e_1_2_3_44_1 e_1_2_3_21_2 Li, PH (WOS:000651107700008) 2020; 1 Hisaki, I (WOS:000350302300022) 2015; 54 (000863957000001.31) 1000 Chen, X (WOS:000675424900001) 2021; 2 Talanova, GG (WOS:000084306600005) 1999; 121 Hisaki, I (WOS:000376825900050) 2016; 138 Pal, SC (WOS:000731062000034) 2021; 6 Lim, DW (WOS:000339562400021) 2014; 53 Yang, QQ (WOS:000535174000069) 2020; 20 Al-Jallal, NA (WOS:000228604100024) 2005; 109 An, S. (000863957000001.14) 2021; 133 Song, XY (WOS:000816339200001) 2022; 144 An, SH (WOS:000707987500014) 2021; 6 Swidan, A (WOS:000379437400007) 2016; 45 (000863957000001.27) 2015; 127 Spek, AL (WOS:000263557900007) 2009; 65 Yang, W (WOS:000384952400029) 2016; 16 An, SH (WOS:000629781900001) 2021; 60 Bryan, JC (WOS:000172102300045) 2001; 57 PEDERSEN, CJ (WOS:A1967A393800035) 1967; 89 Jiménez-García, L (WOS:000273452200036) 2009; 48 Ji, NN (WOS:000598670300001) 2020; 22 Karmakar (000863957000001.35) 2016; 128 Zheng, B (WOS:000300177100001) 2012; 41 Liu, L (WOS:000312944900003) 2013; 15 Lin, RB (WOS:000461694800003) 2019; 48 Li, J (WOS:000400833000008) 2017; 46 Hisaki, I (WOS:000478735900002) 2019; 58 Xing, GL (WOS:000431035500026) 2018; 57 Chen, TH (WOS:000370165300037) 2016; 45 Hisaki, I (WOS:000458348300043) 2019; 141 VANDERSLUIS, P (WOS:A1990CU62000006) 1990; 46 (000863957000001.20) 2019; 131 Wang, B (WOS:000566667700002) 2020; 142 VANVEGGEL, FCJM (WOS:A1994NG03100001) 1994; 94 Raymo, FM (WOS:000081622800002) 1999; 99 Jim?nez-Garc?a, L. (000863957000001.38) 2009; 121 Lim, D.-W. (000863957000001.11) 2014; 126 Karmakar, A (WOS:000383473600023) 2016; 55 Gokel, GW (WOS:000221418500019) 2004; 104 Sun, ZB (WOS:000474625700047) 2019; 43 Niu, ZB (WOS:000271856900023) 2009; 109 Luo, J (WOS:000448408200002) 2018; 20 Lim, DW (WOS:000641069200001) 2021; 50 |
References_xml | – volume: 50 start-page: 6349 year: 2021 end-page: 6368 publication-title: Chem. Soc. Rev. – volume: 46 start-page: 2437 year: 2017 end-page: 2458 publication-title: Chem. Soc. Rev. – volume: 109 start-page: 3694 year: 2005 end-page: 3703 publication-title: J. Phys. Chem. A – volume: 6 start-page: 4431 year: 2021 end-page: 4453 publication-title: ACS Energy Lett. – volume: 6 start-page: 3496 year: 2021 end-page: 3502 publication-title: ACS Energy Lett. – volume: 58 131 start-page: 11160 11278 year: 2019 2019 end-page: 11170 11288 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 2111 year: 2019 end-page: 2121 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 5639 year: 2021 end-page: 5644 publication-title: Mater. Adv. – volume: 53 126 start-page: 7819 7953 year: 2014 2014 end-page: 7822 7956 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 6617 year: 2016 end-page: 6628 publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 6024 year: 2009 end-page: 6049 publication-title: Chem. Rev. – volume: 65 start-page: 148 year: 2009 end-page: 155 publication-title: Acta Crystallogr. Sect. D – volume: 55 128 start-page: 10667 10825 year: 2016 2016 end-page: 10671 10829 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 14399 year: 2020 end-page: 14416 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 10663 year: 2022 end-page: 10687 publication-title: J. Am. Chem. Soc. – volume: 99 start-page: 1643 year: 1999 end-page: 1663 publication-title: Chem. Rev. – volume: 89 start-page: 2495 year: 1967 end-page: 2496 publication-title: J. Am. Chem. Soc. – volume: 94 start-page: 279 year: 1994 end-page: 299 publication-title: Chem. Rev. – volume: 57 start-page: 1359 year: 2001 end-page: 1360 publication-title: Acta. Crystallogr. Sect. C – volume: 1 start-page: 77 year: 2020 end-page: 87 publication-title: Acc. Mater. Res. – volume: 57 130 start-page: 5345 5443 year: 2018 2018 end-page: 5349 5447 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 89 start-page: 7017 year: 1967 end-page: 7036 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 3883 year: 2016 publication-title: Chem. Soc. Rev. – volume: 60 133 start-page: 9959 10047 year: 2021 2021 end-page: 9963 10051 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 121 start-page: 11281 year: 1999 end-page: 11290 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 841 year: 2013 end-page: 844 publication-title: CrystEngComm – volume: 48 start-page: 1362 year: 2019 end-page: 1389 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 10637 year: 2019 end-page: 10644 publication-title: New J. Chem. – volume: 20 start-page: 3456 year: 2020 end-page: 3465 publication-title: Cryst. Growth Des. – volume: 20 start-page: 5884 year: 2018 end-page: 5898 publication-title: CrystEngComm – volume: 45 start-page: 3063 year: 2016 end-page: 3069 publication-title: Dalton Trans. – volume: 48 121 start-page: 9951 10135 year: 2009 2009 end-page: 9953 10138 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 104 start-page: 2723 year: 2004 end-page: 2750 publication-title: Chem. Rev. – volume: 46 start-page: 194 year: 1990 publication-title: Acta Crystallogr. Sect. A – volume: 54 127 start-page: 3008 3051 year: 2015 2015 end-page: 3012 3055 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 22 start-page: 8161 year: 2020 end-page: 8165 publication-title: CrystEngComm – volume: 16 start-page: 5831 year: 2016 end-page: 5835 publication-title: Cryst. Growth Des. – volume: 41 start-page: 1621 year: 2012 end-page: 1631 publication-title: Chem. Soc. Rev. – ident: e_1_2_3_4_1 – ident: e_1_2_3_22_2 doi: 10.1039/C8CS00155C – ident: e_1_2_3_23_3 doi: 10.1002/ange.201909732 – ident: e_1_2_3_28_2 doi: 10.1021/ja9915899 – ident: e_1_2_3_21_2 doi: 10.1039/C8CE00655E – ident: e_1_2_3_42_1 doi: 10.1021/acs.cgd.6b00924 – ident: e_1_2_3_35_1 – ident: e_1_2_3_41_2 doi: 10.1002/ange.200902116 – ident: e_1_2_3_45_1 doi: 10.1021/acs.cgd.0c00235 – ident: e_1_2_3_10_2 doi: 10.1039/C1CS15220C – ident: e_1_2_3_17_2 doi: 10.1002/anie.202101163 – ident: e_1_2_3_12_1 – ident: e_1_2_3_20_1 – ident: e_1_2_3_37_2 doi: 10.1107/S0108767389011189 – ident: e_1_2_3_39_1 doi: 10.1002/anie.201604534 – ident: e_1_2_3_3_2 doi: 10.1021/ja01002a035 – ident: e_1_2_3_29_2 doi: 10.1107/S0108270101016109 – ident: e_1_2_3_15_2 doi: 10.1039/C5DT04316F – ident: e_1_2_3_31_2 doi: 10.1002/anie.201411438 – ident: e_1_2_3_19_1 doi: 10.1021/jp050133c – ident: e_1_2_3_7_2 doi: 10.1021/cr020080k – ident: e_1_2_3_2_2 doi: 10.1021/ja00986a052 – ident: e_1_2_3_23_2 doi: 10.1002/anie.201902147 – ident: e_1_2_3_13_2 doi: 10.1039/C2CE26401C – ident: e_1_2_3_27_1 – ident: e_1_2_3_11_2 doi: 10.1039/C6CS00619A – ident: e_1_2_3_16_1 – ident: e_1_2_3_47_1 doi: 10.1039/D1CS00004G – ident: e_1_2_3_1_1 – ident: e_1_2_3_9_2 doi: 10.1021/cr900002h – ident: e_1_2_3_5_2 doi: 10.1021/cr00026a001 – ident: e_1_2_3_44_2 doi: 10.1002/ange.201800423 – ident: e_1_2_3_8_2 doi: 10.1039/C5CS00934K – ident: e_1_2_3_6_2 doi: 10.1021/cr970081q – ident: e_1_2_3_14_3 doi: 10.1002/ange.201404265 – ident: e_1_2_3_25_2 doi: 10.1021/accountsmr.0c00019 – ident: e_1_2_3_39_2 doi: 10.1002/ange.201604534 – ident: e_1_2_3_17_3 doi: 10.1002/ange.202101163 – ident: e_1_2_3_26_2 doi: 10.1021/jacs.2c02598 – ident: e_1_2_3_33_2 doi: 10.1021/jacs.8b12124 – ident: e_1_2_3_18_2 doi: 10.1021/acsenergylett.1c01681 – ident: e_1_2_3_31_3 doi: 10.1002/ange.201411438 – ident: e_1_2_3_43_1 doi: 10.1039/C9NJ02025J – ident: e_1_2_3_36_1 – ident: e_1_2_3_44_1 doi: 10.1002/anie.201800423 – ident: e_1_2_3_46_1 doi: 10.1039/D0CE01578D – ident: e_1_2_3_30_1 – ident: e_1_2_3_40_1 doi: 10.1021/acsenergylett.1c02045 – ident: e_1_2_3_38_2 doi: 10.1107/S090744490804362X – ident: e_1_2_3_14_2 doi: 10.1002/anie.201404265 – ident: e_1_2_3_34_1 doi: 10.1039/D1MA00411E – ident: e_1_2_3_32_2 doi: 10.1021/jacs.6b02968 – ident: e_1_2_3_24_2 doi: 10.1021/jacs.0c06473 – ident: e_1_2_3_41_1 doi: 10.1002/anie.200902116 – volume: 20 start-page: 3456 year: 2020 ident: WOS:000535174000069 article-title: Three Hydrogen-Bonded Organic Frameworks with Water-Induced Single-Crystal-to-Single-Crystal Transformation and High Proton Conductivity publication-title: CRYSTAL GROWTH & DESIGN doi: 10.1021/acs.cgd.0c00235 – volume: 57 start-page: 1359 year: 2001 ident: WOS:000172102300045 article-title: Tribenzo-18-crown-6 acetonitrile disolvate publication-title: ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY – volume: 133 start-page: 10047 year: 2021 ident: 000863957000001.14 publication-title: Angew. Chem – volume: 121 start-page: 10135 year: 2009 ident: 000863957000001.38 publication-title: Angew. Chem – volume: 1 start-page: 77 year: 2020 ident: WOS:000651107700008 article-title: Hydrogen-Bonded Organic Frameworks: A Rising Class of Porous Molecular Materials publication-title: ACCOUNTS OF MATERIALS RESEARCH doi: 10.1021/accountsmr.0c00019 – volume: 109 start-page: 6024 year: 2009 ident: WOS:000271856900023 article-title: Polycatenanes publication-title: CHEMICAL REVIEWS doi: 10.1021/cr900002h – volume: 94 start-page: 279 year: 1994 ident: WOS:A1994NG03100001 article-title: METALLOMACROCYCLES - SUPRAMOLECULAR CHEMISTRY WITH HARD AND SOFT METAL-CATIONS IN ACTION publication-title: CHEMICAL REVIEWS – volume: 126 start-page: 7953 year: 2014 ident: 000863957000001.11 publication-title: Angew. Chem – volume: 48 start-page: 9951 year: 2009 ident: WOS:000273452200036 article-title: Phosphonated Hexaphenylbenzene: A Crystalline Proton Conductor publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200902116 – volume: 144 start-page: 10663 year: 2022 ident: WOS:000816339200001 article-title: Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c02598 – volume: 48 start-page: 1362 year: 2019 ident: WOS:000461694800003 article-title: Multifunctional porous hydrogen-bonded organic framework materials publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c8cs00155c – volume: 131 start-page: 11278 year: 2019 ident: 000863957000001.20 publication-title: Angew. Chem – volume: 58 start-page: 11160 year: 2019 ident: WOS:000478735900002 article-title: Designing Hydrogen-Bonded Organic Frameworks (HOFs) with Permanent Porosity publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201902147 – volume: 43 start-page: 10637 year: 2019 ident: WOS:000474625700047 article-title: A path to improve proton conductivity: from a 3D hydrogen-bonded organic framework to a 3D copper-organic framework publication-title: NEW JOURNAL OF CHEMISTRY doi: 10.1039/c9nj02025j – volume: 2 start-page: 5639 year: 2021 ident: WOS:000675424900001 article-title: A proton conductive hydrogen-bonded framework incorporating 18-crown-6-ether and dicarboxy-o-terphenyl moieties publication-title: MATERIALS ADVANCES doi: 10.1039/d1ma00411e – volume: 89 start-page: 7017 year: 1967 ident: WOS:A1967A393800035 article-title: CYCLIC POLYETHERS AND THEIR COMPLEXES WITH METAL SALTS publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 16 start-page: 5831 year: 2016 ident: WOS:000384952400029 article-title: Microporous Diaminotriazine-Decorated Porphyrin-Based Hydrogen-Bonded Organic Framework: Permanent Porosity and Proton Conduction publication-title: CRYSTAL GROWTH & DESIGN doi: 10.1021/acs.cgd.6b00924 – volume: 127 start-page: 3051 year: 2015 ident: 000863957000001.27 publication-title: Angew. Chem – volume: 46 start-page: 194 year: 1990 ident: WOS:A1990CU62000006 article-title: BYPASS - AN EFFECTIVE METHOD FOR THE REFINEMENT OF CRYSTAL-STRUCTURES CONTAINING DISORDERED SOLVENT REGIONS publication-title: ACTA CRYSTALLOGRAPHICA SECTION A – volume: 22 start-page: 8161 year: 2020 ident: WOS:000598670300001 article-title: Polyoxometalate-based hydrogen-bonded organic frameworks as a new class of proton conducting materials publication-title: CRYSTENGCOMM doi: 10.1039/d0ce01578d – volume: 15 start-page: 841 year: 2013 ident: WOS:000312944900003 article-title: Distinct interpenetrated metal-organic frameworks constructed from crown ether-based strut analogue publication-title: CRYSTENGCOMM doi: 10.1039/c2ce26401c – volume: 141 start-page: 2111 year: 2019 ident: WOS:000458348300043 article-title: Acid Responsive Hydrogen-Bonded Organic Frameworks publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b12124 – volume: 50 start-page: 6349 year: 2021 ident: WOS:000641069200001 article-title: Rational strategies for proton-conductive metal-organic frameworks publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/d1cs00004g – volume: 65 start-page: 148 year: 2009 ident: WOS:000263557900007 article-title: Structure validation in chemical crystallography publication-title: ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY doi: 10.1107/S090744490804362X – volume: 138 start-page: 6617 year: 2016 ident: WOS:000376825900050 article-title: A Series of Layered Assemblies of Hydrogen-Bonded, Hexagonal Networks of C3-Symmetric π-Conjugated Molecules: A Potential Motif of Porous Organic Materials publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b02968 – volume: 45 start-page: 3883 year: 2016 ident: WOS:000379437400007 article-title: Polyether complexes of groups 13 and 14 publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c5cs00934k – volume: 41 start-page: 1621 year: 2012 ident: WOS:000300177100001 article-title: Supramolecular polymers constructed by crown ether-based molecular recognition publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c1cs15220c – volume: 57 start-page: 5345 year: 2018 ident: WOS:000431035500026 article-title: Synthesis of Crystalline Porous Organic Salts with High Proton Conductivity publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201800423 – volume: 46 start-page: 2437 year: 2017 ident: WOS:000400833000008 article-title: Recent progress in the design and applications of fluorescence probes containing crown ethers publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c6cs00619a – volume: 142 start-page: 14399 year: 2020 ident: WOS:000566667700002 article-title: Hydrogen-Bonded Organic Frameworks as a Tunable Platform for Functional Materials publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c06473 – volume: 6 start-page: 4431 year: 2021 ident: WOS:000731062000034 article-title: Proton-Conducting Hydrogen-Bonded Organic Frameworkss publication-title: ACS ENERGY LETTERS doi: 10.1021/acsenergylett.1c02045 – volume: 54 start-page: 3008 year: 2015 ident: WOS:000350302300022 article-title: A C3-Symmetric Macrocycle-Based, Hydrogen-Bonded, Multiporous Hexagonal Network as a Motif of Porous Molecular Crystals publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201411438 – volume: 109 start-page: 3694 year: 2005 ident: WOS:000228604100024 article-title: Conformational study of the structure of free 18-crown-6 publication-title: JOURNAL OF PHYSICAL CHEMISTRY A doi: 10.1021/jp050133c – volume: 121 start-page: 11281 year: 1999 ident: WOS:000084306600005 article-title: The "picrate effect" on extraction selectivities of aromatic group-containing crown ethers for alkali metal cations publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 55 start-page: 10667 year: 2016 ident: WOS:000383473600023 article-title: Hydrogen-Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Proton-Conducting Materials publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201604534 – volume: 99 start-page: 1643 year: 1999 ident: WOS:000081622800002 article-title: Interlocked macromolecules publication-title: CHEMICAL REVIEWS – year: 1000 ident: 000863957000001.31 publication-title: Deposition Numbers 2192468 (for 3CT-18C6-I) and 2192469 (for 3CT-18C6-Ia) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service – volume: 128 start-page: 10825 year: 2016 ident: 000863957000001.35 publication-title: Angew. Chem – volume: 20 start-page: 5884 year: 2018 ident: WOS:000448408200002 article-title: Hydrogen-bonded organic frameworks: design, structures and potential applications publication-title: CRYSTENGCOMM doi: 10.1039/c8ce00655e – volume: 45 start-page: 3063 year: 2016 ident: WOS:000370165300037 article-title: Metal-organic frameworks constructed from crown ether-based 1,4-benzenedicarboxylic acid derivatives publication-title: DALTON TRANSACTIONS doi: 10.1039/c5dt04316f – volume: 104 start-page: 2723 year: 2004 ident: WOS:000221418500019 article-title: Crown ethers: Sensors for ions and molecular scaffolds for materials and biological models publication-title: CHEMICAL REVIEWS – volume: 53 start-page: 7819 year: 2014 ident: WOS:000339562400021 article-title: Hydrogen Storage in a Potassium-Ion-Bound Metal-Organic Framework Incorporating Crown Ether Struts as Specific Cation Binding Sites publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201404265 – volume: 60 start-page: 9959 year: 2021 ident: WOS:000629781900001 article-title: Construction of Covalent Organic Frameworks with Crown Ether Struts publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202101163 – volume: 6 start-page: 3496 year: 2021 ident: WOS:000707987500014 article-title: Constructing Catalytic Crown Ether-Based Covalent Organic Frameworks for Electroreduction of CO2 publication-title: ACS ENERGY LETTERS doi: 10.1021/acsenergylett.1c01681 |
SSID | ssj0028806 |
Score | 2.5204759 |
Snippet | A rigid hydrogen‐bonded organic framework (HOF) was constructed from a C3‐symmetric hexatopic carboxylic acid with a hydrophilic 18‐crown‐6‐ether (18C6)... A rigid hydrogen‐bonded organic framework (HOF) was constructed from a C 3 ‐symmetric hexatopic carboxylic acid with a hydrophilic 18‐crown‐6‐ether (18C6)... A rigid hydrogen-bonded organic framework (HOF) was constructed from a C-3-symmetric hexatopic carboxylic acid with a hydrophilic 18-crown-6-ether (18C6)... A rigid hydrogen-bonded organic framework (HOF) was constructed from a C3 -symmetric hexatopic carboxylic acid with a hydrophilic 18-crown-6-ether (18C6)... |
Source | Web of Science |
SourceID | proquest webofscience crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202211686 |
SubjectTerms | Carboxylic acids Chemistry Chemistry, Multidisciplinary Crown Ether Crystal Engineering Hydrogen Hydrogen Bond Hydrogen bonding Molecular structure Physical Sciences Porous Framework Porous materials Proton Conduction Protons Science & Technology |
Title | A Proton Conductive Porous Framework of an 18‐Crown‐6‐Ether Derivative Networked by Rigid Hydrogen Bonding Modules |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202211686 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000863957000001 https://www.proquest.com/docview/2730420841 https://www.proquest.com/docview/2714656655 |
Volume | 61 |
WOS | 000863957000001 |
WOSCitedRecordID | wos000863957000001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYhl_TSNmlL3SZBhUBOTmxZku3j4uyyKWQJoYHcjC2NSmiwy_6Upqc-Qp-xT5IZ_yVbKC3JwdjGkm1JM9I30ugbxg5cADIOCuk7WSo0UIrIT7WVvrQiFcKEIAxNDZzN9PRSfrxSVw928bf8EMOEG2lG01-Tghfl4vieNJR2YKN9J9CC0QlxbpPDFqGii4E_SqBwttuLosinKPQ9a2Mgjtezr49K91BzbTBax6_NADR5wYr-11u_ky9Hq2V5ZH78wer4lLK9ZM87dMpHrThtsw2odthW1geFe8W-j_j5vEa8yLO6IqpY7Cz5eT2vVws-6f28eO14UfEw-f3zV0ZmPp41HmMCm_wEZf5bQzfOZ60POlhe3vKL68_Xlk9v7bxGoeYU7xiHVX5W29UNLF6zy8n4Uzb1u-ANvpGR1H6sijC2iYUEIZFGwzJS2mhApQeVgNYmdC6IIUJAIXQcgwi1S5UNXJmKgljV3rDNqq7gLeMmgVLJKFGxAWkc2uzOCZdEDlJtwAiP-X3j5aZjNqcAGzd5y8kscqrPfKhPjx0O6b-2nB5_Tbnby0Le6fYiR8AXkFOCDD32YXiM7UBLLUUFWOOYJiQiOq2Uxw4eytDwwcaYpEXSxkzDV4X_kyzrikeEBUuPiUaI_lGIfDQ7HQ937x6T6T17RtfNHsx4l20u5yvYQzC2LPcbhbsDJAksQg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_lEDBYxUxClt4jiO98BhtT_apd1VVbVSbyFxbFRRJWh_gOXEI_AqvAqPwJMwk7-ySAiE1AOHKEriOLE945mxZ74B2LWeEZGXCNeKNEQDJQncjsyEKzLe4Vz7hmtaGphM5ehUvDoLzzbgaxMLU-FDtAtuxBnlfE0MTgvS-5eooRSCjQYeRxNGKln7VR6Y1Qe02uYvx30c4uecDwcnvZFbJxZwtQiEdKMw8aNMZUahuJZo9ASh1NIgQZpQGSm1b60XmQCFHZdRZLgvbSfMPJt2eEKIX1jvNbhOacQJrr9_3CJWcWSHKqApCFzKe9_gRHp8f_1_1-XgpXK7Jv7WNeZS5A1vwbemsypPl7d7y0W6pz_9giP5X_XmbbhZK-CsW3HMHdgw-V3Y6jV57-7Bxy47mhWoErNekRMaLsoDdlTMiuWcDRtXNlZYluTMV98_f-nRSgaeJR4D0qdZH9n6fYmozqaVm73JWLpix-dvzjM2WmWzAvmWUUpn1BzYpMiWF2Z-H06vpOEPYDMvcrMNTCuThiJQYaSN0FYpZS23KrCmI7XR3AG3oZZY1-DtlEPkIq5gp3lM4xe34-fAi7b8uwq25Lcldxrii-vpax6jTuuR34XwHXjWPsZxoN2kJDfY41jGJ6w9GYYO7P5MtO0HS3uZ9oFLSxSr8v-mWK9uHmEyLBzgJdX-oRFxdzoetFcP_-Wlp7A1Opkcxofj6cEjuEH3y5DTaAc2F7OleYy65yJ9UnI7g9dXzRA_AIdkhkw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIkEv_CNSChipiFPaxHEc58Bhld3VLqWrVUWl3kLiH1RRJdX-AMuJR-BReBVegSdhnL-ySAiE1AOHKEriOLE945mxZ74B2DWeZpGXMdewPEQDJQvcmCvmMkVjSqWvqbRLA4cTPjpmL0_Ckw342sbC1PgQ3YKb5YxqvrYMfq7M_gVoqI3ARvuOogXDBW_cKg_06gMabfMX4z6O8DNKh4PXycht8gq4kgWMu1GY-ZESSguU1hxtniDkkmukRx0Kzbn0jfEiHaCsozyKNPW5iUPlmTymmQX8wnqvwFXGvdgmi-gfdYBVFLmhjmcKAtemvW9hIj26v_6_62LwQrddk37rCnMl8YY34VvbV7Wjy7u95SLfk59-gZH8nzrzFtxo1G_Sq_nlNmzo4g5cT9qsd3fhY49MZyUqxCQpC4uFi9KATMtZuZyTYevIRkpDsoL44vvnL4ldx8Azx2NgtWnSR6Z-X-Gpk0ntZK8VyVfk6PTtqSKjlZqVyLXEJnRGvYEclmp5puf34PhSGn4fNouy0A-ASKHzkAUijKRm0gghjKFGBEbHXGpJHXBbYkllA91uM4icpTXoNE3t-KXd-DnwvCt_XoOW_LbkTkt7aTN5zVPUaD3rdcF8B552j3Ec7F5SVmjscSzjW6Q9HoYO7P5Ms90HK2vZ7gJXdihW5f9NsaRpnkVkWDhAK6L9QyPS3mQ86K62_-WlJ3Bt2h-mr8aTg4ewZW9X8abRDmwuZkv9CBXPRf644nUCby6bH34ASvSE-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Proton+Conductive+Porous+Framework+of+an+18-Crown-6-Ether+Derivative+Networked+by+Rigid+Hydrogen+Bonding+Modules&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Xin&rft.au=Huang%2C+Rui-Kang&rft.au=Takahashi%2C+Kiyonori&rft.au=Noro%2C+Shin-ichiro&rft.date=2022-11-07&rft.pub=Wiley&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=45&rft_id=info:doi/10.1002%2Fanie.202211686&rft_id=info%3Apmid%2F36104981&rft.externalDBID=n%2Fa&rft.externalDocID=000863957000001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |