A Proton Conductive Porous Framework of an 18‐Crown‐6‐Ether Derivative Networked by Rigid Hydrogen Bonding Modules

A rigid hydrogen‐bonded organic framework (HOF) was constructed from a C3‐symmetric hexatopic carboxylic acid with a hydrophilic 18‐crown‐6‐ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4’‐dicarboxy‐o‐terphenyl moieties in the...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 45; pp. e202211686 - n/a
Main Authors Chen, Xin, Huang, Rui‐Kang, Takahashi, Kiyonori, Noro, Shin‐ichiro, Nakamura, Takayoshi, Hisaki, Ichiro
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 07.11.2022
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A rigid hydrogen‐bonded organic framework (HOF) was constructed from a C3‐symmetric hexatopic carboxylic acid with a hydrophilic 18‐crown‐6‐ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4’‐dicarboxy‐o‐terphenyl moieties in the periphery yielded a rigid layered porous framework through directional intermolecular hydrogen bonding. Interestingly, the HOF possesses 1D channels with bottleneck composed of 18C6 rings. The HOF shows proton conductivity (1.12×10−7 S cm−1) through Grotthuss mechanism (Ea=0.27 eV) under 98 %RH. The present unique water channel structure provides an inspiration to create molecular porous materials. A porous hydrogen‐bonded framework (HOF) was constructed from a 18‐crown‐6‐ether (18C6) derivative. Although a 18C6 macrocycle is flexible and has many possible conformations, directional intermolecular hydrogen bonds of 4,4′‐dicarboxy‐o‐terphenyl modules in the periphery of the 18C6 allowed to form a rigid HOF with 1D channels with a bottleneck composed of 18C6 rings. The wet HOF shows proton conductivity (1.12×10−7 S cm−1) through a Grotthuss mechanism (Ea=0.27 eV) under 98 %RH.
AbstractList A rigid hydrogen‐bonded organic framework (HOF) was constructed from a C3‐symmetric hexatopic carboxylic acid with a hydrophilic 18‐crown‐6‐ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4’‐dicarboxy‐o‐terphenyl moieties in the periphery yielded a rigid layered porous framework through directional intermolecular hydrogen bonding. Interestingly, the HOF possesses 1D channels with bottleneck composed of 18C6 rings. The HOF shows proton conductivity (1.12×10−7 S cm−1) through Grotthuss mechanism (Ea=0.27 eV) under 98 %RH. The present unique water channel structure provides an inspiration to create molecular porous materials. A porous hydrogen‐bonded framework (HOF) was constructed from a 18‐crown‐6‐ether (18C6) derivative. Although a 18C6 macrocycle is flexible and has many possible conformations, directional intermolecular hydrogen bonds of 4,4′‐dicarboxy‐o‐terphenyl modules in the periphery of the 18C6 allowed to form a rigid HOF with 1D channels with a bottleneck composed of 18C6 rings. The wet HOF shows proton conductivity (1.12×10−7 S cm−1) through a Grotthuss mechanism (Ea=0.27 eV) under 98 %RH.
A rigid hydrogen-bonded organic framework (HOF) was constructed from a C3 -symmetric hexatopic carboxylic acid with a hydrophilic 18-crown-6-ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4'-dicarboxy-o-terphenyl moieties in the periphery yielded a rigid layered porous framework through directional intermolecular hydrogen bonding. Interestingly, the HOF possesses 1D channels with bottleneck composed of 18C6 rings. The HOF shows proton conductivity (1.12×10-7  S cm-1 ) through Grotthuss mechanism (Ea =0.27 eV) under 98 %RH. The present unique water channel structure provides an inspiration to create molecular porous materials.A rigid hydrogen-bonded organic framework (HOF) was constructed from a C3 -symmetric hexatopic carboxylic acid with a hydrophilic 18-crown-6-ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4'-dicarboxy-o-terphenyl moieties in the periphery yielded a rigid layered porous framework through directional intermolecular hydrogen bonding. Interestingly, the HOF possesses 1D channels with bottleneck composed of 18C6 rings. The HOF shows proton conductivity (1.12×10-7  S cm-1 ) through Grotthuss mechanism (Ea =0.27 eV) under 98 %RH. The present unique water channel structure provides an inspiration to create molecular porous materials.
A rigid hydrogen‐bonded organic framework (HOF) was constructed from a C 3 ‐symmetric hexatopic carboxylic acid with a hydrophilic 18‐crown‐6‐ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4’‐dicarboxy‐ o ‐terphenyl moieties in the periphery yielded a rigid layered porous framework through directional intermolecular hydrogen bonding. Interestingly, the HOF possesses 1D channels with bottleneck composed of 18C6 rings. The HOF shows proton conductivity (1.12×10 −7  S cm −1 ) through Grotthuss mechanism ( E a =0.27 eV) under 98 %RH. The present unique water channel structure provides an inspiration to create molecular porous materials.
A rigid hydrogen‐bonded organic framework (HOF) was constructed from a C3‐symmetric hexatopic carboxylic acid with a hydrophilic 18‐crown‐6‐ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4’‐dicarboxy‐o‐terphenyl moieties in the periphery yielded a rigid layered porous framework through directional intermolecular hydrogen bonding. Interestingly, the HOF possesses 1D channels with bottleneck composed of 18C6 rings. The HOF shows proton conductivity (1.12×10−7 S cm−1) through Grotthuss mechanism (Ea=0.27 eV) under 98 %RH. The present unique water channel structure provides an inspiration to create molecular porous materials.
A rigid hydrogen-bonded organic framework (HOF) was constructed from a C-3-symmetric hexatopic carboxylic acid with a hydrophilic 18-crown-6-ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4'-dicarboxy-o-terphenyl moieties in the periphery yielded a rigid layered porous framework through directional intermolecular hydrogen bonding. Interestingly, the HOF possesses 1D channels with bottleneck composed of 18C6 rings. The HOF shows proton conductivity (1.12x10(-7) S cm(-1)) through Grotthuss mechanism (E-a=0.27 eV) under 98 %RH. The present unique water channel structure provides an inspiration to create molecular porous materials.
Author Huang, Rui‐Kang
Hisaki, Ichiro
Noro, Shin‐ichiro
Chen, Xin
Takahashi, Kiyonori
Nakamura, Takayoshi
Author_xml – sequence: 1
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
  organization: Hokkaido University
– sequence: 2
  givenname: Rui‐Kang
  surname: Huang
  fullname: Huang, Rui‐Kang
  organization: Hokkaido University
– sequence: 3
  givenname: Kiyonori
  surname: Takahashi
  fullname: Takahashi, Kiyonori
  organization: Hokkaido University
– sequence: 4
  givenname: Shin‐ichiro
  surname: Noro
  fullname: Noro, Shin‐ichiro
  organization: Hokkaido University
– sequence: 5
  givenname: Takayoshi
  surname: Nakamura
  fullname: Nakamura, Takayoshi
  email: tnaka@es.hokudai.ac.jp
  organization: Hokkaido University
– sequence: 6
  givenname: Ichiro
  orcidid: 0000-0002-8170-5605
  surname: Hisaki
  fullname: Hisaki, Ichiro
  email: i.hisaki.es@osaka-u.ac.jp
  organization: Osaka University
BookMark eNqNkstuEzEUQC1URB-wZW2JDRJKuLbHj1mGIaWVSqkQrEfOzJ3gMrFbe6YhOz6Bb-RLcEgAqRICS9b14pz7sO4xOfDBIyFPGUwZAH9pvcMpB84ZU0Y9IEdMcjYRWouD_C6EmGgj2SE5Tuk688aAekQOhWJQlIYdkS8zehXDEDytgm_HZnB3SK9CDGOip9GucB3iZxo6aj1l5vvXb1UMa5-jync-fMJIX2N0d_aneInDlseWLjb0vVu6lp5t2hiW6OmrnN_5JX0b2rHH9Jg87Gyf8Mk-npCPp_MP1dnk4t2b82p2MWkKUaiJlpbp1rRohCkVZyCkahQCSJQGlWpY14FGUYDiSmvkTHWlbKFblNxCnv-EPN_lvYnhdsQ01CuXGux76zEPWXPNCiWVkjKjz-6h12GMPneXKQEFB1OwTJkdtcZF6FLj0DdY30S3snFTA4BRopQatodVbsg_E3wVRj9k9cX_q5kudnQTQ0oRu7rZZxuidX3NoN6uQL1dgfr3CmRtek_7VeCvQrnvyvW4-Qddzy7P53_cHy5Mw1s
CitedBy_id crossref_primary_10_1039_D3QI01473H
crossref_primary_10_1002_smll_202206999
crossref_primary_10_1002_adfm_202403635
crossref_primary_10_1016_j_ccr_2024_215760
crossref_primary_10_1002_anie_202504396
crossref_primary_10_1002_ange_202217903
crossref_primary_10_1002_chem_202400079
crossref_primary_10_1039_D2TA09379K
crossref_primary_10_1002_ange_202304313
crossref_primary_10_1007_s11426_024_2377_9
crossref_primary_10_1002_smll_202310797
crossref_primary_10_1021_prechem_4c00019
crossref_primary_10_1002_anie_202217903
crossref_primary_10_1002_adma_202417374
crossref_primary_10_1038_s44160_025_00738_2
crossref_primary_10_1038_s41467_024_47058_1
crossref_primary_10_1002_chem_202303618
crossref_primary_10_1002_zaac_202300084
crossref_primary_10_1039_D4CE01214C
crossref_primary_10_1002_adfm_202413107
crossref_primary_10_1002_ange_202504396
crossref_primary_10_1016_j_jcis_2024_07_086
crossref_primary_10_1002_anie_202304313
crossref_primary_10_1038_s41428_023_00840_2
crossref_primary_10_1063_5_0238032
Cites_doi 10.1039/C8CS00155C
10.1002/ange.201909732
10.1021/ja9915899
10.1039/C8CE00655E
10.1021/acs.cgd.6b00924
10.1002/ange.200902116
10.1021/acs.cgd.0c00235
10.1039/C1CS15220C
10.1002/anie.202101163
10.1107/S0108767389011189
10.1002/anie.201604534
10.1021/ja01002a035
10.1107/S0108270101016109
10.1039/C5DT04316F
10.1002/anie.201411438
10.1021/jp050133c
10.1021/cr020080k
10.1021/ja00986a052
10.1002/anie.201902147
10.1039/C2CE26401C
10.1039/C6CS00619A
10.1039/D1CS00004G
10.1021/cr900002h
10.1021/cr00026a001
10.1002/ange.201800423
10.1039/C5CS00934K
10.1021/cr970081q
10.1002/ange.201404265
10.1021/accountsmr.0c00019
10.1002/ange.201604534
10.1002/ange.202101163
10.1021/jacs.2c02598
10.1021/jacs.8b12124
10.1021/acsenergylett.1c01681
10.1002/ange.201411438
10.1039/C9NJ02025J
10.1002/anie.201800423
10.1039/D0CE01578D
10.1021/acsenergylett.1c02045
10.1107/S090744490804362X
10.1002/anie.201404265
10.1039/D1MA00411E
10.1021/jacs.6b02968
10.1021/jacs.0c06473
10.1002/anie.200902116
10.1039/c8cs00155c
10.1039/c9nj02025j
10.1039/d1ma00411e
10.1039/d0ce01578d
10.1039/c2ce26401c
10.1039/d1cs00004g
10.1039/c5cs00934k
10.1039/c1cs15220c
10.1039/c6cs00619a
10.1039/c8ce00655e
10.1039/c5dt04316f
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
AHQBO
BLEPL
DTL
EGQ
7TM
K9.
7X8
DOI 10.1002/anie.202211686
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
ProQuest Health & Medical Complete (Alumni)
Web of Science
Database_xml – sequence: 1
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 000863957000001
10_1002_anie_202211686
ANIE202211686
Genre shortCommunication
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  funderid: JP19H04557, JP20H05862, JP21H01919, JP21K18961, JP21H05485
– fundername: Chinese Scholarship Council
– fundername: JSPS, Japan; Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); Japan Society for the Promotion of Science
– fundername: Chinese Scholarship Council (CSC); China Scholarship Council
– fundername: Grants-in-Aid for Scientific Research; Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); Japan Society for the Promotion of Science; Grants-in-Aid for Scientific Research (KAKENHI)
  grantid: 22K14655; 22H00311; 20H05862; 21H01919; 21K18961; 21H05485
– fundername: MEXT; Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)
– fundername: KAKENHI; Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); Japan Society for the Promotion of Science; Grants-in-Aid for Scientific Research (KAKENHI)
  grantid: JP19H04557; JP20H05862; JP21K18961; JP21H01919; JP21H05485
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
7TM
K9.
7X8
ID FETCH-LOGICAL-c4346-75a17d8de83896210356c6e005e58e66c1ff07e34062677e216f95d0fb92a0433
IEDL.DBID DR2
ISICitedReferencesCount 20
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000863957000001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 01:17:51 EDT 2025
Fri Jul 25 10:13:55 EDT 2025
Fri Aug 29 16:07:02 EDT 2025
Wed Jul 09 18:16:29 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
Tue Jul 01 01:18:29 EDT 2025
Wed Jan 22 16:32:05 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords DESIGN
Proton Conduction
BONDED ORGANIC FRAMEWORKS
COMPLEXES
Crystal Engineering
CROWN-ETHERS
MOTIF
Hydrogen Bond
Crown Ether
Porous Framework
Language English
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c4346-75a17d8de83896210356c6e005e58e66c1ff07e34062677e216f95d0fb92a0433
Notes KAKEN
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8170-5605
OpenAccessLink https://hdl.handle.net/11094/92731
PMID 36104981
PQID 2730420841
PQPubID 946352
PageCount 5
ParticipantIDs webofscience_primary_000863957000001CitationCount
crossref_citationtrail_10_1002_anie_202211686
crossref_primary_10_1002_anie_202211686
wiley_primary_10_1002_anie_202211686_ANIE202211686
webofscience_primary_000863957000001
proquest_miscellaneous_2714656655
proquest_journals_2730420841
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 7, 2022
PublicationDateYYYYMMDD 2022-11-07
PublicationDate_xml – month: 11
  year: 2022
  text: November 7, 2022
  day: 07
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2021; 6
2004; 104
2009; 65
2021; 2
2020; 20
2009 2009; 48 121
2020; 142
1967; 89
2017; 46
1999; 121
2021; 50
2019; 141
2016; 16
2018; 20
2019 2019; 58 131
2022; 144
2013; 15
2016 2016; 55 128
1990; 46
2020; 1
2019; 43
2018 2018; 57 130
2019; 48
2021 2021; 60 133
1999; 99
2005; 109
2015 2015; 54 127
2016; 138
2020; 22
1994; 94
2009; 109
2001; 57
2016; 45
2012; 41
e_1_2_3_14_3
e_1_2_3_16_1
e_1_2_3_39_1
e_1_2_3_37_2
e_1_2_3_4_1
e_1_2_3_2_2
e_1_2_3_18_2
e_1_2_3_39_2
e_1_2_3_12_1
e_1_2_3_35_1
e_1_2_3_8_2
e_1_2_3_33_2
e_1_2_3_6_2
e_1_2_3_14_2
e_1_2_3_31_3
e_1_2_3_10_2
e_1_2_3_31_2
e_1_2_3_26_2
e_1_2_3_28_2
e_1_2_3_22_2
e_1_2_3_45_1
e_1_2_3_24_2
e_1_2_3_47_1
e_1_2_3_41_2
e_1_2_3_20_1
e_1_2_3_41_1
e_1_2_3_43_1
e_1_2_3_1_1
e_1_2_3_5_2
e_1_2_3_15_2
e_1_2_3_38_2
e_1_2_3_3_2
e_1_2_3_17_2
e_1_2_3_17_3
e_1_2_3_19_1
e_1_2_3_9_2
e_1_2_3_11_2
e_1_2_3_34_1
e_1_2_3_7_2
e_1_2_3_13_2
e_1_2_3_36_1
e_1_2_3_30_1
e_1_2_3_32_2
e_1_2_3_40_1
e_1_2_3_27_1
e_1_2_3_29_2
e_1_2_3_46_1
e_1_2_3_23_2
e_1_2_3_44_2
e_1_2_3_23_3
e_1_2_3_25_2
e_1_2_3_42_1
e_1_2_3_44_1
e_1_2_3_21_2
Li, PH (WOS:000651107700008) 2020; 1
Hisaki, I (WOS:000350302300022) 2015; 54
(000863957000001.31) 1000
Chen, X (WOS:000675424900001) 2021; 2
Talanova, GG (WOS:000084306600005) 1999; 121
Hisaki, I (WOS:000376825900050) 2016; 138
Pal, SC (WOS:000731062000034) 2021; 6
Lim, DW (WOS:000339562400021) 2014; 53
Yang, QQ (WOS:000535174000069) 2020; 20
Al-Jallal, NA (WOS:000228604100024) 2005; 109
An, S. (000863957000001.14) 2021; 133
Song, XY (WOS:000816339200001) 2022; 144
An, SH (WOS:000707987500014) 2021; 6
Swidan, A (WOS:000379437400007) 2016; 45
(000863957000001.27) 2015; 127
Spek, AL (WOS:000263557900007) 2009; 65
Yang, W (WOS:000384952400029) 2016; 16
An, SH (WOS:000629781900001) 2021; 60
Bryan, JC (WOS:000172102300045) 2001; 57
PEDERSEN, CJ (WOS:A1967A393800035) 1967; 89
Jiménez-García, L (WOS:000273452200036) 2009; 48
Ji, NN (WOS:000598670300001) 2020; 22
Karmakar (000863957000001.35) 2016; 128
Zheng, B (WOS:000300177100001) 2012; 41
Liu, L (WOS:000312944900003) 2013; 15
Lin, RB (WOS:000461694800003) 2019; 48
Li, J (WOS:000400833000008) 2017; 46
Hisaki, I (WOS:000478735900002) 2019; 58
Xing, GL (WOS:000431035500026) 2018; 57
Chen, TH (WOS:000370165300037) 2016; 45
Hisaki, I (WOS:000458348300043) 2019; 141
VANDERSLUIS, P (WOS:A1990CU62000006) 1990; 46
(000863957000001.20) 2019; 131
Wang, B (WOS:000566667700002) 2020; 142
VANVEGGEL, FCJM (WOS:A1994NG03100001) 1994; 94
Raymo, FM (WOS:000081622800002) 1999; 99
Jim?nez-Garc?a, L. (000863957000001.38) 2009; 121
Lim, D.-W. (000863957000001.11) 2014; 126
Karmakar, A (WOS:000383473600023) 2016; 55
Gokel, GW (WOS:000221418500019) 2004; 104
Sun, ZB (WOS:000474625700047) 2019; 43
Niu, ZB (WOS:000271856900023) 2009; 109
Luo, J (WOS:000448408200002) 2018; 20
Lim, DW (WOS:000641069200001) 2021; 50
References_xml – volume: 50
  start-page: 6349
  year: 2021
  end-page: 6368
  publication-title: Chem. Soc. Rev.
– volume: 46
  start-page: 2437
  year: 2017
  end-page: 2458
  publication-title: Chem. Soc. Rev.
– volume: 109
  start-page: 3694
  year: 2005
  end-page: 3703
  publication-title: J. Phys. Chem. A
– volume: 6
  start-page: 4431
  year: 2021
  end-page: 4453
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 3496
  year: 2021
  end-page: 3502
  publication-title: ACS Energy Lett.
– volume: 58 131
  start-page: 11160 11278
  year: 2019 2019
  end-page: 11170 11288
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 2111
  year: 2019
  end-page: 2121
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 5639
  year: 2021
  end-page: 5644
  publication-title: Mater. Adv.
– volume: 53 126
  start-page: 7819 7953
  year: 2014 2014
  end-page: 7822 7956
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 6617
  year: 2016
  end-page: 6628
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 6024
  year: 2009
  end-page: 6049
  publication-title: Chem. Rev.
– volume: 65
  start-page: 148
  year: 2009
  end-page: 155
  publication-title: Acta Crystallogr. Sect. D
– volume: 55 128
  start-page: 10667 10825
  year: 2016 2016
  end-page: 10671 10829
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 14399
  year: 2020
  end-page: 14416
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 10663
  year: 2022
  end-page: 10687
  publication-title: J. Am. Chem. Soc.
– volume: 99
  start-page: 1643
  year: 1999
  end-page: 1663
  publication-title: Chem. Rev.
– volume: 89
  start-page: 2495
  year: 1967
  end-page: 2496
  publication-title: J. Am. Chem. Soc.
– volume: 94
  start-page: 279
  year: 1994
  end-page: 299
  publication-title: Chem. Rev.
– volume: 57
  start-page: 1359
  year: 2001
  end-page: 1360
  publication-title: Acta. Crystallogr. Sect. C
– volume: 1
  start-page: 77
  year: 2020
  end-page: 87
  publication-title: Acc. Mater. Res.
– volume: 57 130
  start-page: 5345 5443
  year: 2018 2018
  end-page: 5349 5447
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 89
  start-page: 7017
  year: 1967
  end-page: 7036
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 3883
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 60 133
  start-page: 9959 10047
  year: 2021 2021
  end-page: 9963 10051
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 121
  start-page: 11281
  year: 1999
  end-page: 11290
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 841
  year: 2013
  end-page: 844
  publication-title: CrystEngComm
– volume: 48
  start-page: 1362
  year: 2019
  end-page: 1389
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 10637
  year: 2019
  end-page: 10644
  publication-title: New J. Chem.
– volume: 20
  start-page: 3456
  year: 2020
  end-page: 3465
  publication-title: Cryst. Growth Des.
– volume: 20
  start-page: 5884
  year: 2018
  end-page: 5898
  publication-title: CrystEngComm
– volume: 45
  start-page: 3063
  year: 2016
  end-page: 3069
  publication-title: Dalton Trans.
– volume: 48 121
  start-page: 9951 10135
  year: 2009 2009
  end-page: 9953 10138
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 104
  start-page: 2723
  year: 2004
  end-page: 2750
  publication-title: Chem. Rev.
– volume: 46
  start-page: 194
  year: 1990
  publication-title: Acta Crystallogr. Sect. A
– volume: 54 127
  start-page: 3008 3051
  year: 2015 2015
  end-page: 3012 3055
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 22
  start-page: 8161
  year: 2020
  end-page: 8165
  publication-title: CrystEngComm
– volume: 16
  start-page: 5831
  year: 2016
  end-page: 5835
  publication-title: Cryst. Growth Des.
– volume: 41
  start-page: 1621
  year: 2012
  end-page: 1631
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_3_4_1
– ident: e_1_2_3_22_2
  doi: 10.1039/C8CS00155C
– ident: e_1_2_3_23_3
  doi: 10.1002/ange.201909732
– ident: e_1_2_3_28_2
  doi: 10.1021/ja9915899
– ident: e_1_2_3_21_2
  doi: 10.1039/C8CE00655E
– ident: e_1_2_3_42_1
  doi: 10.1021/acs.cgd.6b00924
– ident: e_1_2_3_35_1
– ident: e_1_2_3_41_2
  doi: 10.1002/ange.200902116
– ident: e_1_2_3_45_1
  doi: 10.1021/acs.cgd.0c00235
– ident: e_1_2_3_10_2
  doi: 10.1039/C1CS15220C
– ident: e_1_2_3_17_2
  doi: 10.1002/anie.202101163
– ident: e_1_2_3_12_1
– ident: e_1_2_3_20_1
– ident: e_1_2_3_37_2
  doi: 10.1107/S0108767389011189
– ident: e_1_2_3_39_1
  doi: 10.1002/anie.201604534
– ident: e_1_2_3_3_2
  doi: 10.1021/ja01002a035
– ident: e_1_2_3_29_2
  doi: 10.1107/S0108270101016109
– ident: e_1_2_3_15_2
  doi: 10.1039/C5DT04316F
– ident: e_1_2_3_31_2
  doi: 10.1002/anie.201411438
– ident: e_1_2_3_19_1
  doi: 10.1021/jp050133c
– ident: e_1_2_3_7_2
  doi: 10.1021/cr020080k
– ident: e_1_2_3_2_2
  doi: 10.1021/ja00986a052
– ident: e_1_2_3_23_2
  doi: 10.1002/anie.201902147
– ident: e_1_2_3_13_2
  doi: 10.1039/C2CE26401C
– ident: e_1_2_3_27_1
– ident: e_1_2_3_11_2
  doi: 10.1039/C6CS00619A
– ident: e_1_2_3_16_1
– ident: e_1_2_3_47_1
  doi: 10.1039/D1CS00004G
– ident: e_1_2_3_1_1
– ident: e_1_2_3_9_2
  doi: 10.1021/cr900002h
– ident: e_1_2_3_5_2
  doi: 10.1021/cr00026a001
– ident: e_1_2_3_44_2
  doi: 10.1002/ange.201800423
– ident: e_1_2_3_8_2
  doi: 10.1039/C5CS00934K
– ident: e_1_2_3_6_2
  doi: 10.1021/cr970081q
– ident: e_1_2_3_14_3
  doi: 10.1002/ange.201404265
– ident: e_1_2_3_25_2
  doi: 10.1021/accountsmr.0c00019
– ident: e_1_2_3_39_2
  doi: 10.1002/ange.201604534
– ident: e_1_2_3_17_3
  doi: 10.1002/ange.202101163
– ident: e_1_2_3_26_2
  doi: 10.1021/jacs.2c02598
– ident: e_1_2_3_33_2
  doi: 10.1021/jacs.8b12124
– ident: e_1_2_3_18_2
  doi: 10.1021/acsenergylett.1c01681
– ident: e_1_2_3_31_3
  doi: 10.1002/ange.201411438
– ident: e_1_2_3_43_1
  doi: 10.1039/C9NJ02025J
– ident: e_1_2_3_36_1
– ident: e_1_2_3_44_1
  doi: 10.1002/anie.201800423
– ident: e_1_2_3_46_1
  doi: 10.1039/D0CE01578D
– ident: e_1_2_3_30_1
– ident: e_1_2_3_40_1
  doi: 10.1021/acsenergylett.1c02045
– ident: e_1_2_3_38_2
  doi: 10.1107/S090744490804362X
– ident: e_1_2_3_14_2
  doi: 10.1002/anie.201404265
– ident: e_1_2_3_34_1
  doi: 10.1039/D1MA00411E
– ident: e_1_2_3_32_2
  doi: 10.1021/jacs.6b02968
– ident: e_1_2_3_24_2
  doi: 10.1021/jacs.0c06473
– ident: e_1_2_3_41_1
  doi: 10.1002/anie.200902116
– volume: 20
  start-page: 3456
  year: 2020
  ident: WOS:000535174000069
  article-title: Three Hydrogen-Bonded Organic Frameworks with Water-Induced Single-Crystal-to-Single-Crystal Transformation and High Proton Conductivity
  publication-title: CRYSTAL GROWTH & DESIGN
  doi: 10.1021/acs.cgd.0c00235
– volume: 57
  start-page: 1359
  year: 2001
  ident: WOS:000172102300045
  article-title: Tribenzo-18-crown-6 acetonitrile disolvate
  publication-title: ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY
– volume: 133
  start-page: 10047
  year: 2021
  ident: 000863957000001.14
  publication-title: Angew. Chem
– volume: 121
  start-page: 10135
  year: 2009
  ident: 000863957000001.38
  publication-title: Angew. Chem
– volume: 1
  start-page: 77
  year: 2020
  ident: WOS:000651107700008
  article-title: Hydrogen-Bonded Organic Frameworks: A Rising Class of Porous Molecular Materials
  publication-title: ACCOUNTS OF MATERIALS RESEARCH
  doi: 10.1021/accountsmr.0c00019
– volume: 109
  start-page: 6024
  year: 2009
  ident: WOS:000271856900023
  article-title: Polycatenanes
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr900002h
– volume: 94
  start-page: 279
  year: 1994
  ident: WOS:A1994NG03100001
  article-title: METALLOMACROCYCLES - SUPRAMOLECULAR CHEMISTRY WITH HARD AND SOFT METAL-CATIONS IN ACTION
  publication-title: CHEMICAL REVIEWS
– volume: 126
  start-page: 7953
  year: 2014
  ident: 000863957000001.11
  publication-title: Angew. Chem
– volume: 48
  start-page: 9951
  year: 2009
  ident: WOS:000273452200036
  article-title: Phosphonated Hexaphenylbenzene: A Crystalline Proton Conductor
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200902116
– volume: 144
  start-page: 10663
  year: 2022
  ident: WOS:000816339200001
  article-title: Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c02598
– volume: 48
  start-page: 1362
  year: 2019
  ident: WOS:000461694800003
  article-title: Multifunctional porous hydrogen-bonded organic framework materials
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c8cs00155c
– volume: 131
  start-page: 11278
  year: 2019
  ident: 000863957000001.20
  publication-title: Angew. Chem
– volume: 58
  start-page: 11160
  year: 2019
  ident: WOS:000478735900002
  article-title: Designing Hydrogen-Bonded Organic Frameworks (HOFs) with Permanent Porosity
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201902147
– volume: 43
  start-page: 10637
  year: 2019
  ident: WOS:000474625700047
  article-title: A path to improve proton conductivity: from a 3D hydrogen-bonded organic framework to a 3D copper-organic framework
  publication-title: NEW JOURNAL OF CHEMISTRY
  doi: 10.1039/c9nj02025j
– volume: 2
  start-page: 5639
  year: 2021
  ident: WOS:000675424900001
  article-title: A proton conductive hydrogen-bonded framework incorporating 18-crown-6-ether and dicarboxy-o-terphenyl moieties
  publication-title: MATERIALS ADVANCES
  doi: 10.1039/d1ma00411e
– volume: 89
  start-page: 7017
  year: 1967
  ident: WOS:A1967A393800035
  article-title: CYCLIC POLYETHERS AND THEIR COMPLEXES WITH METAL SALTS
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 16
  start-page: 5831
  year: 2016
  ident: WOS:000384952400029
  article-title: Microporous Diaminotriazine-Decorated Porphyrin-Based Hydrogen-Bonded Organic Framework: Permanent Porosity and Proton Conduction
  publication-title: CRYSTAL GROWTH & DESIGN
  doi: 10.1021/acs.cgd.6b00924
– volume: 127
  start-page: 3051
  year: 2015
  ident: 000863957000001.27
  publication-title: Angew. Chem
– volume: 46
  start-page: 194
  year: 1990
  ident: WOS:A1990CU62000006
  article-title: BYPASS - AN EFFECTIVE METHOD FOR THE REFINEMENT OF CRYSTAL-STRUCTURES CONTAINING DISORDERED SOLVENT REGIONS
  publication-title: ACTA CRYSTALLOGRAPHICA SECTION A
– volume: 22
  start-page: 8161
  year: 2020
  ident: WOS:000598670300001
  article-title: Polyoxometalate-based hydrogen-bonded organic frameworks as a new class of proton conducting materials
  publication-title: CRYSTENGCOMM
  doi: 10.1039/d0ce01578d
– volume: 15
  start-page: 841
  year: 2013
  ident: WOS:000312944900003
  article-title: Distinct interpenetrated metal-organic frameworks constructed from crown ether-based strut analogue
  publication-title: CRYSTENGCOMM
  doi: 10.1039/c2ce26401c
– volume: 141
  start-page: 2111
  year: 2019
  ident: WOS:000458348300043
  article-title: Acid Responsive Hydrogen-Bonded Organic Frameworks
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b12124
– volume: 50
  start-page: 6349
  year: 2021
  ident: WOS:000641069200001
  article-title: Rational strategies for proton-conductive metal-organic frameworks
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/d1cs00004g
– volume: 65
  start-page: 148
  year: 2009
  ident: WOS:000263557900007
  article-title: Structure validation in chemical crystallography
  publication-title: ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY
  doi: 10.1107/S090744490804362X
– volume: 138
  start-page: 6617
  year: 2016
  ident: WOS:000376825900050
  article-title: A Series of Layered Assemblies of Hydrogen-Bonded, Hexagonal Networks of C3-Symmetric π-Conjugated Molecules: A Potential Motif of Porous Organic Materials
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b02968
– volume: 45
  start-page: 3883
  year: 2016
  ident: WOS:000379437400007
  article-title: Polyether complexes of groups 13 and 14
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c5cs00934k
– volume: 41
  start-page: 1621
  year: 2012
  ident: WOS:000300177100001
  article-title: Supramolecular polymers constructed by crown ether-based molecular recognition
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c1cs15220c
– volume: 57
  start-page: 5345
  year: 2018
  ident: WOS:000431035500026
  article-title: Synthesis of Crystalline Porous Organic Salts with High Proton Conductivity
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201800423
– volume: 46
  start-page: 2437
  year: 2017
  ident: WOS:000400833000008
  article-title: Recent progress in the design and applications of fluorescence probes containing crown ethers
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c6cs00619a
– volume: 142
  start-page: 14399
  year: 2020
  ident: WOS:000566667700002
  article-title: Hydrogen-Bonded Organic Frameworks as a Tunable Platform for Functional Materials
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c06473
– volume: 6
  start-page: 4431
  year: 2021
  ident: WOS:000731062000034
  article-title: Proton-Conducting Hydrogen-Bonded Organic Frameworkss
  publication-title: ACS ENERGY LETTERS
  doi: 10.1021/acsenergylett.1c02045
– volume: 54
  start-page: 3008
  year: 2015
  ident: WOS:000350302300022
  article-title: A C3-Symmetric Macrocycle-Based, Hydrogen-Bonded, Multiporous Hexagonal Network as a Motif of Porous Molecular Crystals
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201411438
– volume: 109
  start-page: 3694
  year: 2005
  ident: WOS:000228604100024
  article-title: Conformational study of the structure of free 18-crown-6
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY A
  doi: 10.1021/jp050133c
– volume: 121
  start-page: 11281
  year: 1999
  ident: WOS:000084306600005
  article-title: The "picrate effect" on extraction selectivities of aromatic group-containing crown ethers for alkali metal cations
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 55
  start-page: 10667
  year: 2016
  ident: WOS:000383473600023
  article-title: Hydrogen-Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Proton-Conducting Materials
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201604534
– volume: 99
  start-page: 1643
  year: 1999
  ident: WOS:000081622800002
  article-title: Interlocked macromolecules
  publication-title: CHEMICAL REVIEWS
– year: 1000
  ident: 000863957000001.31
  publication-title: Deposition Numbers 2192468 (for 3CT-18C6-I) and 2192469 (for 3CT-18C6-Ia) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service
– volume: 128
  start-page: 10825
  year: 2016
  ident: 000863957000001.35
  publication-title: Angew. Chem
– volume: 20
  start-page: 5884
  year: 2018
  ident: WOS:000448408200002
  article-title: Hydrogen-bonded organic frameworks: design, structures and potential applications
  publication-title: CRYSTENGCOMM
  doi: 10.1039/c8ce00655e
– volume: 45
  start-page: 3063
  year: 2016
  ident: WOS:000370165300037
  article-title: Metal-organic frameworks constructed from crown ether-based 1,4-benzenedicarboxylic acid derivatives
  publication-title: DALTON TRANSACTIONS
  doi: 10.1039/c5dt04316f
– volume: 104
  start-page: 2723
  year: 2004
  ident: WOS:000221418500019
  article-title: Crown ethers: Sensors for ions and molecular scaffolds for materials and biological models
  publication-title: CHEMICAL REVIEWS
– volume: 53
  start-page: 7819
  year: 2014
  ident: WOS:000339562400021
  article-title: Hydrogen Storage in a Potassium-Ion-Bound Metal-Organic Framework Incorporating Crown Ether Struts as Specific Cation Binding Sites
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201404265
– volume: 60
  start-page: 9959
  year: 2021
  ident: WOS:000629781900001
  article-title: Construction of Covalent Organic Frameworks with Crown Ether Struts
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202101163
– volume: 6
  start-page: 3496
  year: 2021
  ident: WOS:000707987500014
  article-title: Constructing Catalytic Crown Ether-Based Covalent Organic Frameworks for Electroreduction of CO2
  publication-title: ACS ENERGY LETTERS
  doi: 10.1021/acsenergylett.1c01681
SSID ssj0028806
Score 2.5204759
Snippet A rigid hydrogen‐bonded organic framework (HOF) was constructed from a C3‐symmetric hexatopic carboxylic acid with a hydrophilic 18‐crown‐6‐ether (18C6)...
A rigid hydrogen‐bonded organic framework (HOF) was constructed from a C 3 ‐symmetric hexatopic carboxylic acid with a hydrophilic 18‐crown‐6‐ether (18C6)...
A rigid hydrogen-bonded organic framework (HOF) was constructed from a C-3-symmetric hexatopic carboxylic acid with a hydrophilic 18-crown-6-ether (18C6)...
A rigid hydrogen-bonded organic framework (HOF) was constructed from a C3 -symmetric hexatopic carboxylic acid with a hydrophilic 18-crown-6-ether (18C6)...
Source Web of Science
SourceID proquest
webofscience
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202211686
SubjectTerms Carboxylic acids
Chemistry
Chemistry, Multidisciplinary
Crown Ether
Crystal Engineering
Hydrogen
Hydrogen Bond
Hydrogen bonding
Molecular structure
Physical Sciences
Porous Framework
Porous materials
Proton Conduction
Protons
Science & Technology
Title A Proton Conductive Porous Framework of an 18‐Crown‐6‐Ether Derivative Networked by Rigid Hydrogen Bonding Modules
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202211686
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000863957000001
https://www.proquest.com/docview/2730420841
https://www.proquest.com/docview/2714656655
Volume 61
WOS 000863957000001
WOSCitedRecordID wos000863957000001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYhl_TSNmlL3SZBhUBOTmxZku3j4uyyKWQJoYHcjC2NSmiwy_6Upqc-Qp-xT5IZ_yVbKC3JwdjGkm1JM9I30ugbxg5cADIOCuk7WSo0UIrIT7WVvrQiFcKEIAxNDZzN9PRSfrxSVw928bf8EMOEG2lG01-Tghfl4vieNJR2YKN9J9CC0QlxbpPDFqGii4E_SqBwttuLosinKPQ9a2Mgjtezr49K91BzbTBax6_NADR5wYr-11u_ky9Hq2V5ZH78wer4lLK9ZM87dMpHrThtsw2odthW1geFe8W-j_j5vEa8yLO6IqpY7Cz5eT2vVws-6f28eO14UfEw-f3zV0ZmPp41HmMCm_wEZf5bQzfOZ60POlhe3vKL68_Xlk9v7bxGoeYU7xiHVX5W29UNLF6zy8n4Uzb1u-ANvpGR1H6sijC2iYUEIZFGwzJS2mhApQeVgNYmdC6IIUJAIXQcgwi1S5UNXJmKgljV3rDNqq7gLeMmgVLJKFGxAWkc2uzOCZdEDlJtwAiP-X3j5aZjNqcAGzd5y8kscqrPfKhPjx0O6b-2nB5_Tbnby0Le6fYiR8AXkFOCDD32YXiM7UBLLUUFWOOYJiQiOq2Uxw4eytDwwcaYpEXSxkzDV4X_kyzrikeEBUuPiUaI_lGIfDQ7HQ937x6T6T17RtfNHsx4l20u5yvYQzC2LPcbhbsDJAksQg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_lEDBYxUxClt4jiO98BhtT_apd1VVbVSbyFxbFRRJWh_gOXEI_AqvAqPwJMwk7-ySAiE1AOHKEriOLE945mxZ74B2LWeEZGXCNeKNEQDJQncjsyEKzLe4Vz7hmtaGphM5ehUvDoLzzbgaxMLU-FDtAtuxBnlfE0MTgvS-5eooRSCjQYeRxNGKln7VR6Y1Qe02uYvx30c4uecDwcnvZFbJxZwtQiEdKMw8aNMZUahuJZo9ASh1NIgQZpQGSm1b60XmQCFHZdRZLgvbSfMPJt2eEKIX1jvNbhOacQJrr9_3CJWcWSHKqApCFzKe9_gRHp8f_1_1-XgpXK7Jv7WNeZS5A1vwbemsypPl7d7y0W6pz_9giP5X_XmbbhZK-CsW3HMHdgw-V3Y6jV57-7Bxy47mhWoErNekRMaLsoDdlTMiuWcDRtXNlZYluTMV98_f-nRSgaeJR4D0qdZH9n6fYmozqaVm73JWLpix-dvzjM2WmWzAvmWUUpn1BzYpMiWF2Z-H06vpOEPYDMvcrMNTCuThiJQYaSN0FYpZS23KrCmI7XR3AG3oZZY1-DtlEPkIq5gp3lM4xe34-fAi7b8uwq25Lcldxrii-vpax6jTuuR34XwHXjWPsZxoN2kJDfY41jGJ6w9GYYO7P5MtO0HS3uZ9oFLSxSr8v-mWK9uHmEyLBzgJdX-oRFxdzoetFcP_-Wlp7A1Opkcxofj6cEjuEH3y5DTaAc2F7OleYy65yJ9UnI7g9dXzRA_AIdkhkw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIkEv_CNSChipiFPaxHEc58Bhld3VLqWrVUWl3kLiH1RRJdX-AMuJR-BReBVegSdhnL-ySAiE1AOHKEriOLE945mxZ74B2DWeZpGXMdewPEQDJQvcmCvmMkVjSqWvqbRLA4cTPjpmL0_Ckw342sbC1PgQ3YKb5YxqvrYMfq7M_gVoqI3ARvuOogXDBW_cKg_06gMabfMX4z6O8DNKh4PXycht8gq4kgWMu1GY-ZESSguU1hxtniDkkmukRx0Kzbn0jfEiHaCsozyKNPW5iUPlmTymmQX8wnqvwFXGvdgmi-gfdYBVFLmhjmcKAtemvW9hIj26v_6_62LwQrddk37rCnMl8YY34VvbV7Wjy7u95SLfk59-gZH8nzrzFtxo1G_Sq_nlNmzo4g5cT9qsd3fhY49MZyUqxCQpC4uFi9KATMtZuZyTYevIRkpDsoL44vvnL4ldx8Azx2NgtWnSR6Z-X-Gpk0ntZK8VyVfk6PTtqSKjlZqVyLXEJnRGvYEclmp5puf34PhSGn4fNouy0A-ASKHzkAUijKRm0gghjKFGBEbHXGpJHXBbYkllA91uM4icpTXoNE3t-KXd-DnwvCt_XoOW_LbkTkt7aTN5zVPUaD3rdcF8B552j3Ec7F5SVmjscSzjW6Q9HoYO7P5Ms90HK2vZ7gJXdihW5f9NsaRpnkVkWDhAK6L9QyPS3mQ86K62_-WlJ3Bt2h-mr8aTg4ewZW9X8abRDmwuZkv9CBXPRf644nUCby6bH34ASvSE-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Proton+Conductive+Porous+Framework+of+an+18-Crown-6-Ether+Derivative+Networked+by+Rigid+Hydrogen+Bonding+Modules&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Xin&rft.au=Huang%2C+Rui-Kang&rft.au=Takahashi%2C+Kiyonori&rft.au=Noro%2C+Shin-ichiro&rft.date=2022-11-07&rft.pub=Wiley&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=45&rft_id=info:doi/10.1002%2Fanie.202211686&rft_id=info%3Apmid%2F36104981&rft.externalDBID=n%2Fa&rft.externalDocID=000863957000001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon