A Proton Conductive Porous Framework of an 18‐Crown‐6‐Ether Derivative Networked by Rigid Hydrogen Bonding Modules
A rigid hydrogen‐bonded organic framework (HOF) was constructed from a C3‐symmetric hexatopic carboxylic acid with a hydrophilic 18‐crown‐6‐ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4’‐dicarboxy‐o‐terphenyl moieties in the...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 45; pp. e202211686 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
07.11.2022
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A rigid hydrogen‐bonded organic framework (HOF) was constructed from a C3‐symmetric hexatopic carboxylic acid with a hydrophilic 18‐crown‐6‐ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4’‐dicarboxy‐o‐terphenyl moieties in the periphery yielded a rigid layered porous framework through directional intermolecular hydrogen bonding. Interestingly, the HOF possesses 1D channels with bottleneck composed of 18C6 rings. The HOF shows proton conductivity (1.12×10−7 S cm−1) through Grotthuss mechanism (Ea=0.27 eV) under 98 %RH. The present unique water channel structure provides an inspiration to create molecular porous materials.
A porous hydrogen‐bonded framework (HOF) was constructed from a 18‐crown‐6‐ether (18C6) derivative. Although a 18C6 macrocycle is flexible and has many possible conformations, directional intermolecular hydrogen bonds of 4,4′‐dicarboxy‐o‐terphenyl modules in the periphery of the 18C6 allowed to form a rigid HOF with 1D channels with a bottleneck composed of 18C6 rings. The wet HOF shows proton conductivity (1.12×10−7 S cm−1) through a Grotthuss mechanism (Ea=0.27 eV) under 98 %RH. |
---|---|
Bibliography: | KAKEN ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1433-7851 1521-3773 1521-3773 |
DOI: | 10.1002/anie.202211686 |