Design Concepts for High-Voltage Variable-Capacitance DC Generators
The transmission requirements of the next generation of offshore wind farms, such as the Round Two U.K. offshore development proposals, may rely on high-voltage direct current (HVDC) technology for at least a part of their power collection and transmission requirements. HVDC technology is particular...
Saved in:
Published in | IEEE transactions on industry applications Vol. 45; no. 5; pp. 1778 - 1784 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The transmission requirements of the next generation of offshore wind farms, such as the Round Two U.K. offshore development proposals, may rely on high-voltage direct current (HVDC) technology for at least a part of their power collection and transmission requirements. HVDC technology is particularly suited for the transmission of high powers through large lengths of submarine cables; however, its application is limited by the high cost of offshore ac-dc converter stations. This paper therefore investigates the feasibility of the direct generation of HVDC power using a novel generator topology, as an alternative solution to the generation-transmission requirements of large offshore wind farms. A variable-capacitance generator uses electrostatic fields to generate an HVDC output with a minimum of power conditioning and is based on a previous work that suggests system power densities comparable with the conventional generator-transformer-rectifier systems to be achievable. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0093-9994 1939-9367 |
DOI: | 10.1109/TIA.2009.2027545 |