Comparing pH-responsive nanogel swelling in dispersion and inside a polyacrylamide gel using photoluminescence spectroscopy and small-angle neutron scattering
[Display omitted] Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (N...
Saved in:
Published in | Journal of colloid and interface science Vol. 608; no. Pt 1; pp. 378 - 385 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (NG) that used Förster-resonance energy transfer (FRET) to report changes in the probe separation and NG swelling within hydrogels using photoluminescence (PL) spectroscopy. However, FRET cannot measure nanoparticle dimensions and is subject to artefacts. Here, we report the use of small-angle neutron scattering (SANS) to study both the NGs in dispersion and in polyacrylamide (PAAm) gels as a function of pH. We compare the PL and SANS data for both systems and as a function of pH. The SANS data for the dispersed NGs indicate that they have a core–shell structure with a swollen mesh size of ∼1.0 nm. We hypothesized that the NGs inside the PAAm gel would show the same general changes in scattering as the pH is increased, as observed for the dispersed NGs, and this is confirmed by the data. In summary, the data confirm that PL is a suitable (accessible) method for reporting internal environmental changes within gels using NG probes. |
---|---|
AbstractList | [Display omitted]
Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (NG) that used Förster-resonance energy transfer (FRET) to report changes in the probe separation and NG swelling within hydrogels using photoluminescence (PL) spectroscopy. However, FRET cannot measure nanoparticle dimensions and is subject to artefacts. Here, we report the use of small-angle neutron scattering (SANS) to study both the NGs in dispersion and in polyacrylamide (PAAm) gels as a function of pH. We compare the PL and SANS data for both systems and as a function of pH. The SANS data for the dispersed NGs indicate that they have a core–shell structure with a swollen mesh size of ∼1.0 nm. We hypothesized that the NGs inside the PAAm gel would show the same general changes in scattering as the pH is increased, as observed for the dispersed NGs, and this is confirmed by the data. In summary, the data confirm that PL is a suitable (accessible) method for reporting internal environmental changes within gels using NG probes. Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (NG) that used Förster-resonance energy transfer (FRET) to report changes in the probe separation and NG swelling within hydrogels using photoluminescence (PL) spectroscopy. However, FRET cannot measure nanoparticle dimensions and is subject to artefacts. Here, we report the use of small-angle neutron scattering (SANS) to study both the NGs in dispersion and in polyacrylamide (PAAm) gels as a function of pH. We compare the PL and SANS data for both systems and as a function of pH. The SANS data for the dispersed NGs indicate that they have a core-shell structure with a swollen mesh size of ∼1.0 nm. We hypothesized that the NGs inside the PAAm gel would show the same general changes in scattering as the pH is increased, as observed for the dispersed NGs, and this is confirmed by the data. In summary, the data confirm that PL is a suitable (accessible) method for reporting internal environmental changes within gels using NG probes. Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (NG) that used Förster-resonance energy transfer (FRET) to report changes in the probe separation and NG swelling within hydrogels using photoluminescence (PL) spectroscopy. However, FRET cannot measure nanoparticle dimensions and is subject to artefacts. Here, we report the use of small-angle neutron scattering (SANS) to study both the NGs in dispersion and in polyacrylamide (PAAm) gels as a function of pH. We compare the PL and SANS data for both systems and as a function of pH. The SANS data for the dispersed NGs indicate that they have a core-shell structure with a swollen mesh size of ∼1.0 nm. We hypothesized that the NGs inside the PAAm gel would show the same general changes in scattering as the pH is increased, as observed for the dispersed NGs, and this is confirmed by the data. In summary, the data confirm that PL is a suitable (accessible) method for reporting internal environmental changes within gels using NG probes.Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (NG) that used Förster-resonance energy transfer (FRET) to report changes in the probe separation and NG swelling within hydrogels using photoluminescence (PL) spectroscopy. However, FRET cannot measure nanoparticle dimensions and is subject to artefacts. Here, we report the use of small-angle neutron scattering (SANS) to study both the NGs in dispersion and in polyacrylamide (PAAm) gels as a function of pH. We compare the PL and SANS data for both systems and as a function of pH. The SANS data for the dispersed NGs indicate that they have a core-shell structure with a swollen mesh size of ∼1.0 nm. We hypothesized that the NGs inside the PAAm gel would show the same general changes in scattering as the pH is increased, as observed for the dispersed NGs, and this is confirmed by the data. In summary, the data confirm that PL is a suitable (accessible) method for reporting internal environmental changes within gels using NG probes. Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (NG) that used Förster-resonance energy transfer (FRET) to report changes in the probe separation and NG swelling within hydrogels using photoluminescence (PL) spectroscopy. However, FRET cannot measure nanoparticle dimensions and is subject to artefacts. Here, we report the use of small-angle neutron scattering (SANS) to study both the NGs in dispersion and in polyacrylamide (PAAm) gels as a function of pH. We compare the PL and SANS data for both systems and as a function of pH. The SANS data for the dispersed NGs indicate that they have a core–shell structure with a swollen mesh size of ∼1.0 nm. We hypothesized that the NGs inside the PAAm gel would show the same general changes in scattering as the pH is increased, as observed for the dispersed NGs, and this is confirmed by the data. In summary, the data confirm that PL is a suitable (accessible) method for reporting internal environmental changes within gels using NG probes. |
Author | Milani, Amir H. Mahmoudi, Najet Saunders, Brian R. Lu, Dongdong King, Stephen M. Zhu, Mingning |
Author_xml | – sequence: 1 givenname: Mingning orcidid: 0000-0002-2246-6552 surname: Zhu fullname: Zhu, Mingning organization: School of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, UK – sequence: 2 givenname: Dongdong surname: Lu fullname: Lu, Dongdong organization: School of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, UK – sequence: 3 givenname: Amir H. surname: Milani fullname: Milani, Amir H. organization: School of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, UK – sequence: 4 givenname: Najet surname: Mahmoudi fullname: Mahmoudi, Najet organization: ISIS Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK – sequence: 5 givenname: Stephen M. orcidid: 0000-0003-3386-9151 surname: King fullname: King, Stephen M. organization: ISIS Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK – sequence: 6 givenname: Brian R. surname: Saunders fullname: Saunders, Brian R. organization: School of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34626983$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1v1DAQtVAR3Rb-AAeUI5cEO46dtcQFrYAiVeICZ2vWnixeOXawk6L9M_2tON32wqGcRpr3MaP3rshFiAEJectowyiTH47N0bjctLRlDVUNk_wF2TCqRN0zyi_IhhakVr3qL8lVzkdKGRNCvSKXvJOtVFu-Ife7OE6QXDhU002dME8xZHeHVYAQD-ir_Ae9X2EXKuvyhCm7GCoItmyys1hBNUV_ApNOHsZ1scqW_GD5K87RL6MLmA0Gg1UxMHOK2cTp9GCSR_C-hnDw5SYuBQtVNjDPuD71mrwcwGd88zivyc8vn3_sburb71-_7T7d1qbjfK5RDR2VXY-iU4NVIIaebltu96Ck4WxgwsAglaV7znrknYCCsD2wnrEB7MCvyfuz75Ti7wXzrEdXPvYeAsYl61ZyKWjb9-r_VLGlUnVUyEJ990hd9iNaPSU3Qjrpp_gLYXsmmBJJTjho42aYS8BzAuc1o3ptWh_12rRem9ZU6dJ0kbb_SJ_cnxV9PIuwZHnnMOls3NqLdan0om10z8n_AkBnxsE |
CitedBy_id | crossref_primary_10_1016_j_eurpolymj_2024_112961 crossref_primary_10_1016_j_nantod_2025_102690 crossref_primary_10_1039_D3TB01712E crossref_primary_10_1016_j_molliq_2022_119508 crossref_primary_10_1016_j_microc_2022_107503 crossref_primary_10_1016_j_eurpolymj_2023_112323 crossref_primary_10_1016_j_jcis_2024_02_185 crossref_primary_10_1002_advs_202304776 crossref_primary_10_32604_jrm_2022_022901 |
Cites_doi | 10.1021/acs.biomac.5b00576 10.1021/la049156t 10.1002/9783527684489.ch11 10.1021/jp982855s 10.1021/ja015974l 10.1038/nature12070 10.1039/C5CS00199D 10.1021/acsmacrolett.7b00709 10.1016/j.biomaterials.2013.05.078 10.1021/bm060983d 10.1021/ma035658m 10.1021/ja1069932 10.1039/C6SM02713J 10.1021/acsabm.0c00858 10.1002/adma.202006116 10.1021/acs.chemmater.0c04400 10.1016/j.biomaterials.2012.06.075 10.1021/ar300273v 10.1021/am301600u 10.1002/anie.201812950 10.1063/1.463637 10.1007/978-3-319-01104-2 10.1107/S0021889887087181 10.3390/molecules25235624 10.1021/acs.accounts.9b00528 10.1038/s41598-020-61096-x 10.1021/ja037118a 10.1371/journal.pone.0103878 10.1021/acsami.9b23413 10.1021/ja807714j 10.1039/ft9969203385 10.1021/acs.chemrev.7b00425 10.1016/j.addr.2012.02.002 10.1016/j.biomaterials.2014.11.005 10.1016/j.progpolymsci.2008.01.002 10.1073/pnas.93.13.6264 10.1021/bm9004639 10.1023/A:1015071103237 10.1107/S0021889810015773 10.1016/j.biomaterials.2010.06.030 10.1002/anie.201911048 10.1016/S0001-8686(98)00071-2 10.1021/ma00100a058 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2021.09.163 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 385 |
ExternalDocumentID | 34626983 10_1016_j_jcis_2021_09_163 S0021979721016295 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c433t-e9f40647e549fd9a5f70823dba96c31f15caf69d0b317e345aba91ba1711fadf3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 16:00:05 EDT 2025 Fri Jul 11 16:02:31 EDT 2025 Thu Apr 03 06:58:11 EDT 2025 Tue Jul 01 01:19:11 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Fri Feb 23 02:47:00 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 1 |
Keywords | Nanogel SANS pH-responsive Polyacrylamide FRET Hydrogel Probe |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c433t-e9f40647e549fd9a5f70823dba96c31f15caf69d0b317e345aba91ba1711fadf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2246-6552 0000-0003-3386-9151 |
OpenAccessLink | https://www.research.manchester.ac.uk/portal/en/publications/comparing-phresponsive-nanogel-swelling-in-dispersion-and-inside-a-polyacrylamide-gel-using-photoluminescence-spectroscopy-and-smallangle-neutron-scattering(8b514c60-bbd6-4227-a430-948dd10ec3b4).html |
PMID | 34626983 |
PQID | 2580694056 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2636502779 proquest_miscellaneous_2580694056 pubmed_primary_34626983 crossref_citationtrail_10_1016_j_jcis_2021_09_163 crossref_primary_10_1016_j_jcis_2021_09_163 elsevier_sciencedirect_doi_10_1016_j_jcis_2021_09_163 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-15 |
PublicationDateYYYYMMDD | 2022-02-15 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wu, Yao, Wang, Xie, Zhang, Jiang (b0115) 2015; 39 Kryuchkov (b0235) 2001; 42 Xu, Xu, Lin, Jiang, Zhang, Li, Ma, Zhang, Li, Kai, Yu, Loh (b0080) 2021; 4 Amalvy, Wanless, Li, Michailidou, Armes, Duccini (b0045) 2004; 20 Gota, Okabe, Funatsu, Harada, Uchiyama (b0110) 2009; 131 Zhang, Sun, Wang, Xu, Qu, Xia, Shen, Shi (b0025) 2020; 12 Cavaye (b0160) 2019; 58 Wignall, Bates (b0215) 1987; 20 Milani, Saunders, Nguyen, Ratcliffe, Adlam, Freemont, Hoyland, Armes, Saunders (b0030) 2017; 13 Hammouda (b0225) 2010; 43 R.A. Pethrick, J.V. Dawkins, Modern techniques for polymer characterisation, Wiley, 1999 (Chapter 7). Reese, Mikhonin, Kamenjicki, Tikhonov, Asher (b0105) 2004; 126 Ahmadi, Mahmoudi, Li, Ma, Doutch, Foglia, Heenan, Barlow, Lawrence (b0210) 2020; 10 Hoare, Pelton (b0040) 2004; 37 Higgins, Benoit (b0165) 1996 B. Hamouda, Probing nanoscale structures - The SANS Toolbox Wu, Shen, Banerjee, Zhou (b0090) 2010; 31 Lakowicz (b0175) 2010 Rey, Fernandez-Rodriguez, Karg, Isa, Vogel (b0020) 2020; 53 Zhu, Lu, Wu, Lian, Wang, Milani, Cui, Nguyen, Chen, Lyon, Adlam, Freemont, Hoyland, Saunders (b0125) 2017; 6 Yuan, Lin, Zheng, Zhu (b0185) 2013; 46 Rambo, Tainer (b0140) 2013; 496 Ha, Enderle, Ogletree, Chemla, Selvin, Weiss (b0180) 1996; 93 Saunders, Vincent (b0035) 1999; 80 Fujioka-Kobayashi, Ota, Shimoda, Nakahama, Akiyoshi, Miyamoto, Iseki (b0070) 2012; 33 Fonin, Sulatskaya, Kuznetsova, Turoverov (b0135) 2014; 9 Karino, Ikeda, Yasuda, Kohjiya, Shibayama (b0255) 2007; 8 Rodriguez, Wolfe, Fryd (b0245) 1994; 27 Downloaded 29/04/21. Cosgrove (b0200) 2010 Gan, Lyon (b0240) 2001; 123 Saunders, Vincent (b0260) 1996; 92 pp. 197–205. Zhao, Zhang, Wu, Li, Zhang, Chen, Xing (b0055) 2021; 60 Milani, Saunders, Nguyen, Wu, Saunders (b0265) 2021; 33 Oh, Drumright, Siegwart, Matyjaszewski (b0050) 2008; 33 Gao, Li, Ding, Liu, Wu, Li, Feng, Zhu, Zhang (b0060) 2021; 33 Zhang, Yu, Wei, Liu, Zhao, Huang (b0130) 2018; 118 Weldrick, San, Paunov (b0065) 2021; 4 Pérez, Lang (b0190) 1999; 103 Chacko, Ventura, Zhuang, Thayumanavan (b0010) 2012; 64 Ornstein, Zernike (b0230) 1914; 17 b0220 Quan, Wang, Zhou, Kumar, Narain (b0100) 2015; 16 Bencherif, Washburn, Matyjaszewski (b0075) 2009; 10 Accessed May 26, 2021. Molina, Asadian-Birjand, Balach, Bergueiro, Miceli, Calderón (b0085) 2015; 44 Lombardo, Calandra, Kiselev (b0155) 2020; 25 Shibayama, Tanaka, Han (b0250) 1992; 97 Y.B. Melnichenko, Small-angle scattering from confined and interfacial Fluids, Springer (eBook), 2016. Ryu, Chacko, Jiwpanich, Bickerton, Babu, Thayumanavan (b0005) 2010; 132 B.H. Tan, J.P.K. Tan, K.C. Tam, in: L.A. Lyon, M.J. Serpe (Eds.) Hydrogel micro and nanoparticles, Wiley, 2012 (Chapter 4). Jiang, Zhou, Mu, Xie, Zhu, Zhu, Zhao, Xu, Yang (b0095) 2013; 34 Xing, Mao, Lai, Yan (b0120) 2012; 4 P. K. Pranzas, in: Neutrons and Synchrotron Radiation in Engineering Materials Science, 2017, doi Rambo (10.1016/j.jcis.2021.09.163_b0140) 2013; 496 Shibayama (10.1016/j.jcis.2021.09.163_b0250) 1992; 97 Yuan (10.1016/j.jcis.2021.09.163_b0185) 2013; 46 Hoare (10.1016/j.jcis.2021.09.163_b0040) 2004; 37 Ha (10.1016/j.jcis.2021.09.163_b0180) 1996; 93 Chacko (10.1016/j.jcis.2021.09.163_b0010) 2012; 64 Weldrick (10.1016/j.jcis.2021.09.163_b0065) 2021; 4 Higgins (10.1016/j.jcis.2021.09.163_b0165) 1996 Milani (10.1016/j.jcis.2021.09.163_b0265) 2021; 33 Wignall (10.1016/j.jcis.2021.09.163_b0215) 1987; 20 Pérez (10.1016/j.jcis.2021.09.163_b0190) 1999; 103 Fonin (10.1016/j.jcis.2021.09.163_b0135) 2014; 9 10.1016/j.jcis.2021.09.163_b0195 10.1016/j.jcis.2021.09.163_b0150 10.1016/j.jcis.2021.09.163_b0220 10.1016/j.jcis.2021.09.163_b0145 Kryuchkov (10.1016/j.jcis.2021.09.163_b0235) 2001; 42 Fujioka-Kobayashi (10.1016/j.jcis.2021.09.163_b0070) 2012; 33 Rodriguez (10.1016/j.jcis.2021.09.163_b0245) 1994; 27 Gan (10.1016/j.jcis.2021.09.163_b0240) 2001; 123 Lombardo (10.1016/j.jcis.2021.09.163_b0155) 2020; 25 Ornstein (10.1016/j.jcis.2021.09.163_b0230) 1914; 17 Gao (10.1016/j.jcis.2021.09.163_b0060) 2021; 33 Molina (10.1016/j.jcis.2021.09.163_b0085) 2015; 44 Lakowicz (10.1016/j.jcis.2021.09.163_b0175) 2010 Amalvy (10.1016/j.jcis.2021.09.163_b0045) 2004; 20 Xing (10.1016/j.jcis.2021.09.163_b0120) 2012; 4 10.1016/j.jcis.2021.09.163_b0015 Reese (10.1016/j.jcis.2021.09.163_b0105) 2004; 126 Wu (10.1016/j.jcis.2021.09.163_b0115) 2015; 39 Saunders (10.1016/j.jcis.2021.09.163_b0035) 1999; 80 Quan (10.1016/j.jcis.2021.09.163_b0100) 2015; 16 Rey (10.1016/j.jcis.2021.09.163_b0020) 2020; 53 Jiang (10.1016/j.jcis.2021.09.163_b0095) 2013; 34 Zhang (10.1016/j.jcis.2021.09.163_b0025) 2020; 12 Cavaye (10.1016/j.jcis.2021.09.163_b0160) 2019; 58 10.1016/j.jcis.2021.09.163_b0170 Ryu (10.1016/j.jcis.2021.09.163_b0005) 2010; 132 Bencherif (10.1016/j.jcis.2021.09.163_b0075) 2009; 10 Cosgrove (10.1016/j.jcis.2021.09.163_b0200) 2010 Milani (10.1016/j.jcis.2021.09.163_b0030) 2017; 13 10.1016/j.jcis.2021.09.163_b0205 Ahmadi (10.1016/j.jcis.2021.09.163_b0210) 2020; 10 Gota (10.1016/j.jcis.2021.09.163_b0110) 2009; 131 Hammouda (10.1016/j.jcis.2021.09.163_b0225) 2010; 43 Xu (10.1016/j.jcis.2021.09.163_b0080) 2021; 4 Saunders (10.1016/j.jcis.2021.09.163_b0260) 1996; 92 Zhao (10.1016/j.jcis.2021.09.163_b0055) 2021; 60 Zhang (10.1016/j.jcis.2021.09.163_b0130) 2018; 118 Karino (10.1016/j.jcis.2021.09.163_b0255) 2007; 8 Oh (10.1016/j.jcis.2021.09.163_b0050) 2008; 33 Wu (10.1016/j.jcis.2021.09.163_b0090) 2010; 31 Zhu (10.1016/j.jcis.2021.09.163_b0125) 2017; 6 |
References_xml | – reference: R.A. Pethrick, J.V. Dawkins, Modern techniques for polymer characterisation, Wiley, 1999 (Chapter 7). – volume: 37 start-page: 2544 year: 2004 end-page: 2550 ident: b0040 publication-title: Macromolecules – volume: 25 start-page: 5624 year: 2020 ident: b0155 publication-title: Molecules – volume: 132 start-page: 17227 year: 2010 end-page: 17235 ident: b0005 publication-title: J. Am. Chem. Soc. – reference: , pp. 197–205. – year: 2010 ident: b0200 article-title: Colloid Science: Principles, Methods and Applications – reference: Accessed May 26, 2021. – volume: 33 start-page: 448 year: 2008 end-page: 477 ident: b0050 publication-title: Prog. Polym. Sci. – volume: 123 start-page: 8203 year: 2001 end-page: 8209 ident: b0240 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 7613 year: 2012 end-page: 7620 ident: b0070 publication-title: Biomaterials – volume: 6 start-page: 1245 year: 2017 end-page: 1250 ident: b0125 publication-title: ACS Macro Lett. – volume: 97 start-page: 6842 year: 1992 end-page: 6854 ident: b0250 publication-title: J. Chem. Phys. – volume: 60 start-page: 14760 year: 2021 end-page: 14778 ident: b0055 publication-title: Angew. Chem. Int. Ed. – reference: , Downloaded 29/04/21. – volume: 12 start-page: 9107 year: 2020 end-page: 9117 ident: b0025 publication-title: ACS Appl. Mater. Interf. – volume: 131 start-page: 2766 year: 2009 end-page: 2767 ident: b0110 publication-title: J. Am. Chem. Soc. – reference: B. Hamouda, Probing nanoscale structures - The SANS Toolbox, – volume: 46 start-page: 1462 year: 2013 end-page: 1473 ident: b0185 publication-title: Acc. Chem. Res. – reference: P. K. Pranzas, in: Neutrons and Synchrotron Radiation in Engineering Materials Science, 2017, doi: – volume: 33 start-page: 2006116 year: 2021 ident: b0060 publication-title: Adv. Mater. – volume: 53 start-page: 414 year: 2020 end-page: 424 ident: b0020 publication-title: Acc. Chem. Res. – volume: 64 start-page: 836 year: 2012 end-page: 851 ident: b0010 publication-title: Adv. Drug. Deliv. Rev. – volume: 39 start-page: 260 year: 2015 end-page: 268 ident: b0115 publication-title: Biomaterials – volume: 118 start-page: 1770 year: 2018 end-page: 1839 ident: b0130 publication-title: Chem. Rev. – volume: 58 start-page: 9338 year: 2019 end-page: 9346 ident: b0160 publication-title: Angew. Chem. Int. Ed. – volume: 31 start-page: 7555 year: 2010 end-page: 7566 ident: b0090 publication-title: Biomaterials – volume: 42 start-page: 390 year: 2001 end-page: 392 ident: b0235 publication-title: Refract. Ind. Ceram. – volume: 44 start-page: 6161 year: 2015 end-page: 6186 ident: b0085 publication-title: Chem. Soc. Rev. – year: 1996 ident: b0165 article-title: Polymers and Neutron Scattering – volume: 17 start-page: 134 year: 1914 ident: b0230 publication-title: Proc. Acad. Sci. Amerstdam – volume: 4 start-page: 5662 year: 2012 end-page: 5672 ident: b0120 publication-title: ACS Appl. Mater. Interf. – ident: b0220 – reference: B.H. Tan, J.P.K. Tan, K.C. Tam, in: L.A. Lyon, M.J. Serpe (Eds.) Hydrogel micro and nanoparticles, Wiley, 2012 (Chapter 4). – volume: 34 start-page: 7418 year: 2013 end-page: 7428 ident: b0095 publication-title: Biomaterials – volume: 10 start-page: 4082 year: 2020 ident: b0210 publication-title: Sci. Rep. – volume: 8 start-page: 693 year: 2007 end-page: 699 ident: b0255 publication-title: Biomacromolecules – volume: 20 start-page: 28 year: 1987 end-page: 40 ident: b0215 publication-title: J. Appl. Crystallog. – volume: 4 start-page: 3 year: 2021 end-page: 13 ident: b0080 publication-title: ACS Appl. Bio Mater. – volume: 9 year: 2014 ident: b0135 publication-title: PLOS ONE – volume: 16 start-page: 1978 year: 2015 end-page: 1986 ident: b0100 publication-title: Biomacromolecules – reference: Y.B. Melnichenko, Small-angle scattering from confined and interfacial Fluids, Springer (eBook), 2016. – volume: 92 start-page: 3385 year: 1996 end-page: 3389 ident: b0260 publication-title: J. Chem. Soc., Faraday Trans. – volume: 103 start-page: 2072 year: 1999 end-page: 2084 ident: b0190 publication-title: J. Phys. Chem. B – year: 2010 ident: b0175 article-title: Principles of Fluorescence Spectroscopy – volume: 80 start-page: 1 year: 1999 end-page: 25 ident: b0035 publication-title: Adv. Coll. Interf. Sci. – volume: 126 start-page: 1493 year: 2004 end-page: 1496 ident: b0105 publication-title: J. Am. Chem. Soc. – volume: 496 start-page: 477 year: 2013 end-page: 481 ident: b0140 publication-title: Nature – volume: 4 start-page: 1187 year: 2021 end-page: 1201 ident: b0065 publication-title: ACS Appl. Mater. Interf. – volume: 93 start-page: 6264 year: 1996 ident: b0180 publication-title: PNAS – volume: 27 start-page: 6642 year: 1994 end-page: 6647 ident: b0245 publication-title: Macromolecules – volume: 33 start-page: 2319 year: 2021 end-page: 2330 ident: b0265 publication-title: Chem. Mater. – volume: 10 start-page: 2499 year: 2009 end-page: 2507 ident: b0075 publication-title: Biomacromolecules – volume: 43 start-page: 716 year: 2010 end-page: 719 ident: b0225 publication-title: J. Appl. Cryst. – volume: 13 start-page: 1554 year: 2017 end-page: 1560 ident: b0030 publication-title: Soft Matter – volume: 20 start-page: 8992 year: 2004 end-page: 8999 ident: b0045 publication-title: Langmuir – year: 2010 ident: 10.1016/j.jcis.2021.09.163_b0175 – year: 1996 ident: 10.1016/j.jcis.2021.09.163_b0165 – volume: 16 start-page: 1978 year: 2015 ident: 10.1016/j.jcis.2021.09.163_b0100 publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b00576 – volume: 20 start-page: 8992 year: 2004 ident: 10.1016/j.jcis.2021.09.163_b0045 publication-title: Langmuir doi: 10.1021/la049156t – ident: 10.1016/j.jcis.2021.09.163_b0150 doi: 10.1002/9783527684489.ch11 – volume: 103 start-page: 2072 year: 1999 ident: 10.1016/j.jcis.2021.09.163_b0190 publication-title: J. Phys. Chem. B doi: 10.1021/jp982855s – volume: 123 start-page: 8203 year: 2001 ident: 10.1016/j.jcis.2021.09.163_b0240 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja015974l – volume: 496 start-page: 477 year: 2013 ident: 10.1016/j.jcis.2021.09.163_b0140 publication-title: Nature doi: 10.1038/nature12070 – volume: 44 start-page: 6161 year: 2015 ident: 10.1016/j.jcis.2021.09.163_b0085 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00199D – volume: 6 start-page: 1245 year: 2017 ident: 10.1016/j.jcis.2021.09.163_b0125 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.7b00709 – volume: 34 start-page: 7418 year: 2013 ident: 10.1016/j.jcis.2021.09.163_b0095 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.05.078 – volume: 8 start-page: 693 year: 2007 ident: 10.1016/j.jcis.2021.09.163_b0255 publication-title: Biomacromolecules doi: 10.1021/bm060983d – volume: 37 start-page: 2544 year: 2004 ident: 10.1016/j.jcis.2021.09.163_b0040 publication-title: Macromolecules doi: 10.1021/ma035658m – volume: 4 start-page: 1187 year: 2021 ident: 10.1016/j.jcis.2021.09.163_b0065 publication-title: ACS Appl. Mater. Interf. – volume: 132 start-page: 17227 year: 2010 ident: 10.1016/j.jcis.2021.09.163_b0005 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1069932 – volume: 13 start-page: 1554 year: 2017 ident: 10.1016/j.jcis.2021.09.163_b0030 publication-title: Soft Matter doi: 10.1039/C6SM02713J – volume: 4 start-page: 3 year: 2021 ident: 10.1016/j.jcis.2021.09.163_b0080 publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.0c00858 – volume: 33 start-page: 2006116 year: 2021 ident: 10.1016/j.jcis.2021.09.163_b0060 publication-title: Adv. Mater. doi: 10.1002/adma.202006116 – volume: 33 start-page: 2319 year: 2021 ident: 10.1016/j.jcis.2021.09.163_b0265 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c04400 – volume: 33 start-page: 7613 year: 2012 ident: 10.1016/j.jcis.2021.09.163_b0070 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.06.075 – volume: 46 start-page: 1462 year: 2013 ident: 10.1016/j.jcis.2021.09.163_b0185 publication-title: Acc. Chem. Res. doi: 10.1021/ar300273v – volume: 4 start-page: 5662 year: 2012 ident: 10.1016/j.jcis.2021.09.163_b0120 publication-title: ACS Appl. Mater. Interf. doi: 10.1021/am301600u – ident: 10.1016/j.jcis.2021.09.163_b0205 – volume: 58 start-page: 9338 year: 2019 ident: 10.1016/j.jcis.2021.09.163_b0160 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201812950 – volume: 97 start-page: 6842 year: 1992 ident: 10.1016/j.jcis.2021.09.163_b0250 publication-title: J. Chem. Phys. doi: 10.1063/1.463637 – ident: 10.1016/j.jcis.2021.09.163_b0145 doi: 10.1007/978-3-319-01104-2 – volume: 20 start-page: 28 year: 1987 ident: 10.1016/j.jcis.2021.09.163_b0215 publication-title: J. Appl. Crystallog. doi: 10.1107/S0021889887087181 – volume: 25 start-page: 5624 year: 2020 ident: 10.1016/j.jcis.2021.09.163_b0155 publication-title: Molecules doi: 10.3390/molecules25235624 – ident: 10.1016/j.jcis.2021.09.163_b0015 – volume: 53 start-page: 414 year: 2020 ident: 10.1016/j.jcis.2021.09.163_b0020 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00528 – ident: 10.1016/j.jcis.2021.09.163_b0195 – volume: 10 start-page: 4082 year: 2020 ident: 10.1016/j.jcis.2021.09.163_b0210 publication-title: Sci. Rep. doi: 10.1038/s41598-020-61096-x – volume: 126 start-page: 1493 year: 2004 ident: 10.1016/j.jcis.2021.09.163_b0105 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja037118a – volume: 9 year: 2014 ident: 10.1016/j.jcis.2021.09.163_b0135 publication-title: PLOS ONE doi: 10.1371/journal.pone.0103878 – volume: 12 start-page: 9107 year: 2020 ident: 10.1016/j.jcis.2021.09.163_b0025 publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.9b23413 – volume: 131 start-page: 2766 year: 2009 ident: 10.1016/j.jcis.2021.09.163_b0110 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja807714j – volume: 92 start-page: 3385 year: 1996 ident: 10.1016/j.jcis.2021.09.163_b0260 publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/ft9969203385 – volume: 118 start-page: 1770 year: 2018 ident: 10.1016/j.jcis.2021.09.163_b0130 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00425 – volume: 64 start-page: 836 year: 2012 ident: 10.1016/j.jcis.2021.09.163_b0010 publication-title: Adv. Drug. Deliv. Rev. doi: 10.1016/j.addr.2012.02.002 – volume: 39 start-page: 260 year: 2015 ident: 10.1016/j.jcis.2021.09.163_b0115 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.11.005 – volume: 33 start-page: 448 year: 2008 ident: 10.1016/j.jcis.2021.09.163_b0050 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2008.01.002 – volume: 93 start-page: 6264 year: 1996 ident: 10.1016/j.jcis.2021.09.163_b0180 publication-title: PNAS doi: 10.1073/pnas.93.13.6264 – volume: 10 start-page: 2499 year: 2009 ident: 10.1016/j.jcis.2021.09.163_b0075 publication-title: Biomacromolecules doi: 10.1021/bm9004639 – volume: 42 start-page: 390 year: 2001 ident: 10.1016/j.jcis.2021.09.163_b0235 publication-title: Refract. Ind. Ceram. doi: 10.1023/A:1015071103237 – volume: 43 start-page: 716 year: 2010 ident: 10.1016/j.jcis.2021.09.163_b0225 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889810015773 – volume: 31 start-page: 7555 year: 2010 ident: 10.1016/j.jcis.2021.09.163_b0090 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.06.030 – ident: 10.1016/j.jcis.2021.09.163_b0170 – volume: 17 start-page: 134 year: 1914 ident: 10.1016/j.jcis.2021.09.163_b0230 publication-title: Proc. Acad. Sci. Amerstdam – volume: 60 start-page: 14760 year: 2021 ident: 10.1016/j.jcis.2021.09.163_b0055 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201911048 – year: 2010 ident: 10.1016/j.jcis.2021.09.163_b0200 – volume: 80 start-page: 1 year: 1999 ident: 10.1016/j.jcis.2021.09.163_b0035 publication-title: Adv. Coll. Interf. Sci. doi: 10.1016/S0001-8686(98)00071-2 – volume: 27 start-page: 6642 year: 1994 ident: 10.1016/j.jcis.2021.09.163_b0245 publication-title: Macromolecules doi: 10.1021/ma00100a058 – ident: 10.1016/j.jcis.2021.09.163_b0220 |
SSID | ssj0011559 |
Score | 2.4419422 |
Snippet | [Display omitted]
Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for... Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 378 |
SubjectTerms | Acrylic Resins drugs energy transfer fluorescence FRET Hydrogel Hydrogels Hydrogen-Ion Concentration Nanogel Nanogels neutrons pH-responsive photoluminescence Polyacrylamide Probe SANS Scattering, Small Angle spectroscopy Spectrum Analysis |
Title | Comparing pH-responsive nanogel swelling in dispersion and inside a polyacrylamide gel using photoluminescence spectroscopy and small-angle neutron scattering |
URI | https://dx.doi.org/10.1016/j.jcis.2021.09.163 https://www.ncbi.nlm.nih.gov/pubmed/34626983 https://www.proquest.com/docview/2580694056 https://www.proquest.com/docview/2636502779 |
Volume | 608 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOiJbXQqmMxA2ZxrETr4_VqtUCoicq9WbZjrOkSp1oH0h74afwW5nJYwWH7qFXx55YnvHM2J75hpCPYFOslqVlqbMZkyEkzIEhZArMrYMDkU-7Kgrfr_L5tfx6k90ckNmYC4NhlYPu73V6p62HlrNhNc_aqsIcX9htCtFnwG1JNSaaS6lQyj__3oV5cHx268M8OMPeQ-JMH-N16yuE7E45Yp3yXNxnnO5zPjsjdPmcPBu8R3reT_CIHIR4TB7PxqJtx-TpP_iCL8ifWV9lMC5oO2fLIRz2V6DRxmYRarrCqzv8XEVaVAgajpdn1MYCWrCQJ7W0beqt9cstiA424DAMlgeSP5s16jYMnPe4cLRL20R4zKbddkRWd7aumY2LGv4ZNnjtTle-g_QECi_J9eXFj9mcDQUZmJdCrFnQpcTk1ACHyrLQNisVPtQVzurcC17yzNsy10XiwCsJQmYWvnBnueK8tEUpXpHD2MTwhlBnBWiX4AstrExcMQUi08QrJXLgvBQTwkdOGD-glWPRjNqMYWm3BrlnkHsm0Qa4NyGfdmPaHqtjb-9sZLD5T-IMGJO94z6M0mCAufi-YmNoNtApm2IaMbiUe_rkAnziVCk9Ia97UdrNVUg4XeqpePvAmb0jT1JMzsByNdkJOVwvN-E9uExrd9rtiVPy6PzLt_nVX3JNGh8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa69NDtMHTdK9u6acBug1DLsuzoWAQr3FdOLdCbIMty5sKTjTwK5M_0t470I9gOzaFXWaIFkSIpifxIyA-wKUZFhWFhZiSLnAtYBoaQJWBuMzgQ2bCtonA9i9Pb6OJO3u2R6ZALg2GVve7vdHqrrfuWk341T5qyxBxf2G0Jos-A2xIq-YLsIzqVHJH90_PLdLZ9TMCXty7SgzMc0OfOdGFe97ZE1O6QI9wpj8VT9ukp_7O1Q2eH5HXvQNLTbo5vyJ7zR-RgOtRtOyKv_oEYfEsep12hQT-nTcoWfUTsg6Pe-HruKrrE2zv8XHqal4gbjvdn1PgcWrCWJzW0qauNsYsNSA824DCMlweSv-sVqjeMnbe4drTN3ESEzLrZtESWf0xVMePnFfzTrfHmnS5ti-oJFN6R27NfN9OU9TUZmI2EWDGnigjzUx2cK4tcGVkk-FaXZ0bFVvCCS2uKWOVBBo6JE5E08IVnhiecFyYvxHsy8rV3HwnNjAAF42yuhImCLJ8AkUlgk0TEwPxIjAkfOKFtD1iOdTMqPUSm3Wvknkbu6UBp4N6Y_NyOaTq4jp295cBg_Z_QabAnO8d9H6RBA3PxicV4V6-hk5xgJjF4lTv6xALc4jBJ1Jh86ERpO1cRwQFTTcSnZ87sGzlIb66v9NX57PIzeRlirgZWr5FfyGi1WLtj8KBW2dd-h_wFAIUc0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+pH-responsive+nanogel+swelling+in+dispersion+and+inside+a+polyacrylamide+gel+using+photoluminescence+spectroscopy+and+small-angle+neutron+scattering&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Zhu%2C+Mingning&rft.au=Lu%2C+Dongdong&rft.au=Milani%2C+Amir+H&rft.au=Mahmoudi%2C+Najet&rft.date=2022-02-15&rft.issn=0021-9797&rft.volume=608+p.378-385&rft.spage=378&rft.epage=385&rft_id=info:doi/10.1016%2Fj.jcis.2021.09.163&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |