Comparing pH-responsive nanogel swelling in dispersion and inside a polyacrylamide gel using photoluminescence spectroscopy and small-angle neutron scattering

[Display omitted] Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (N...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 608; no. Pt 1; pp. 378 - 385
Main Authors Zhu, Mingning, Lu, Dongdong, Milani, Amir H., Mahmoudi, Najet, King, Stephen M., Saunders, Brian R.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (NG) that used Förster-resonance energy transfer (FRET) to report changes in the probe separation and NG swelling within hydrogels using photoluminescence (PL) spectroscopy. However, FRET cannot measure nanoparticle dimensions and is subject to artefacts. Here, we report the use of small-angle neutron scattering (SANS) to study both the NGs in dispersion and in polyacrylamide (PAAm) gels as a function of pH. We compare the PL and SANS data for both systems and as a function of pH. The SANS data for the dispersed NGs indicate that they have a core–shell structure with a swollen mesh size of ∼1.0 nm. We hypothesized that the NGs inside the PAAm gel would show the same general changes in scattering as the pH is increased, as observed for the dispersed NGs, and this is confirmed by the data. In summary, the data confirm that PL is a suitable (accessible) method for reporting internal environmental changes within gels using NG probes.
AbstractList [Display omitted] Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (NG) that used Förster-resonance energy transfer (FRET) to report changes in the probe separation and NG swelling within hydrogels using photoluminescence (PL) spectroscopy. However, FRET cannot measure nanoparticle dimensions and is subject to artefacts. Here, we report the use of small-angle neutron scattering (SANS) to study both the NGs in dispersion and in polyacrylamide (PAAm) gels as a function of pH. We compare the PL and SANS data for both systems and as a function of pH. The SANS data for the dispersed NGs indicate that they have a core–shell structure with a swollen mesh size of ∼1.0 nm. We hypothesized that the NGs inside the PAAm gel would show the same general changes in scattering as the pH is increased, as observed for the dispersed NGs, and this is confirmed by the data. In summary, the data confirm that PL is a suitable (accessible) method for reporting internal environmental changes within gels using NG probes.
Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (NG) that used Förster-resonance energy transfer (FRET) to report changes in the probe separation and NG swelling within hydrogels using photoluminescence (PL) spectroscopy. However, FRET cannot measure nanoparticle dimensions and is subject to artefacts. Here, we report the use of small-angle neutron scattering (SANS) to study both the NGs in dispersion and in polyacrylamide (PAAm) gels as a function of pH. We compare the PL and SANS data for both systems and as a function of pH. The SANS data for the dispersed NGs indicate that they have a core-shell structure with a swollen mesh size of ∼1.0 nm. We hypothesized that the NGs inside the PAAm gel would show the same general changes in scattering as the pH is increased, as observed for the dispersed NGs, and this is confirmed by the data. In summary, the data confirm that PL is a suitable (accessible) method for reporting internal environmental changes within gels using NG probes.
Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (NG) that used Förster-resonance energy transfer (FRET) to report changes in the probe separation and NG swelling within hydrogels using photoluminescence (PL) spectroscopy. However, FRET cannot measure nanoparticle dimensions and is subject to artefacts. Here, we report the use of small-angle neutron scattering (SANS) to study both the NGs in dispersion and in polyacrylamide (PAAm) gels as a function of pH. We compare the PL and SANS data for both systems and as a function of pH. The SANS data for the dispersed NGs indicate that they have a core-shell structure with a swollen mesh size of ∼1.0 nm. We hypothesized that the NGs inside the PAAm gel would show the same general changes in scattering as the pH is increased, as observed for the dispersed NGs, and this is confirmed by the data. In summary, the data confirm that PL is a suitable (accessible) method for reporting internal environmental changes within gels using NG probes.Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (NG) that used Förster-resonance energy transfer (FRET) to report changes in the probe separation and NG swelling within hydrogels using photoluminescence (PL) spectroscopy. However, FRET cannot measure nanoparticle dimensions and is subject to artefacts. Here, we report the use of small-angle neutron scattering (SANS) to study both the NGs in dispersion and in polyacrylamide (PAAm) gels as a function of pH. We compare the PL and SANS data for both systems and as a function of pH. The SANS data for the dispersed NGs indicate that they have a core-shell structure with a swollen mesh size of ∼1.0 nm. We hypothesized that the NGs inside the PAAm gel would show the same general changes in scattering as the pH is increased, as observed for the dispersed NGs, and this is confirmed by the data. In summary, the data confirm that PL is a suitable (accessible) method for reporting internal environmental changes within gels using NG probes.
Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (NG) that used Förster-resonance energy transfer (FRET) to report changes in the probe separation and NG swelling within hydrogels using photoluminescence (PL) spectroscopy. However, FRET cannot measure nanoparticle dimensions and is subject to artefacts. Here, we report the use of small-angle neutron scattering (SANS) to study both the NGs in dispersion and in polyacrylamide (PAAm) gels as a function of pH. We compare the PL and SANS data for both systems and as a function of pH. The SANS data for the dispersed NGs indicate that they have a core–shell structure with a swollen mesh size of ∼1.0 nm. We hypothesized that the NGs inside the PAAm gel would show the same general changes in scattering as the pH is increased, as observed for the dispersed NGs, and this is confirmed by the data. In summary, the data confirm that PL is a suitable (accessible) method for reporting internal environmental changes within gels using NG probes.
Author Milani, Amir H.
Mahmoudi, Najet
Saunders, Brian R.
Lu, Dongdong
King, Stephen M.
Zhu, Mingning
Author_xml – sequence: 1
  givenname: Mingning
  orcidid: 0000-0002-2246-6552
  surname: Zhu
  fullname: Zhu, Mingning
  organization: School of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, UK
– sequence: 2
  givenname: Dongdong
  surname: Lu
  fullname: Lu, Dongdong
  organization: School of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, UK
– sequence: 3
  givenname: Amir H.
  surname: Milani
  fullname: Milani, Amir H.
  organization: School of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, UK
– sequence: 4
  givenname: Najet
  surname: Mahmoudi
  fullname: Mahmoudi, Najet
  organization: ISIS Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK
– sequence: 5
  givenname: Stephen M.
  orcidid: 0000-0003-3386-9151
  surname: King
  fullname: King, Stephen M.
  organization: ISIS Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK
– sequence: 6
  givenname: Brian R.
  surname: Saunders
  fullname: Saunders, Brian R.
  organization: School of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34626983$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAQtVAR3Rb-AAeUI5cEO46dtcQFrYAiVeICZ2vWnixeOXawk6L9M_2tON32wqGcRpr3MaP3rshFiAEJectowyiTH47N0bjctLRlDVUNk_wF2TCqRN0zyi_IhhakVr3qL8lVzkdKGRNCvSKXvJOtVFu-Ife7OE6QXDhU002dME8xZHeHVYAQD-ir_Ae9X2EXKuvyhCm7GCoItmyys1hBNUV_ApNOHsZ1scqW_GD5K87RL6MLmA0Gg1UxMHOK2cTp9GCSR_C-hnDw5SYuBQtVNjDPuD71mrwcwGd88zivyc8vn3_sburb71-_7T7d1qbjfK5RDR2VXY-iU4NVIIaebltu96Ck4WxgwsAglaV7znrknYCCsD2wnrEB7MCvyfuz75Ti7wXzrEdXPvYeAsYl61ZyKWjb9-r_VLGlUnVUyEJ990hd9iNaPSU3Qjrpp_gLYXsmmBJJTjho42aYS8BzAuc1o3ptWh_12rRem9ZU6dJ0kbb_SJ_cnxV9PIuwZHnnMOls3NqLdan0om10z8n_AkBnxsE
CitedBy_id crossref_primary_10_1016_j_eurpolymj_2024_112961
crossref_primary_10_1016_j_nantod_2025_102690
crossref_primary_10_1039_D3TB01712E
crossref_primary_10_1016_j_molliq_2022_119508
crossref_primary_10_1016_j_microc_2022_107503
crossref_primary_10_1016_j_eurpolymj_2023_112323
crossref_primary_10_1016_j_jcis_2024_02_185
crossref_primary_10_1002_advs_202304776
crossref_primary_10_32604_jrm_2022_022901
Cites_doi 10.1021/acs.biomac.5b00576
10.1021/la049156t
10.1002/9783527684489.ch11
10.1021/jp982855s
10.1021/ja015974l
10.1038/nature12070
10.1039/C5CS00199D
10.1021/acsmacrolett.7b00709
10.1016/j.biomaterials.2013.05.078
10.1021/bm060983d
10.1021/ma035658m
10.1021/ja1069932
10.1039/C6SM02713J
10.1021/acsabm.0c00858
10.1002/adma.202006116
10.1021/acs.chemmater.0c04400
10.1016/j.biomaterials.2012.06.075
10.1021/ar300273v
10.1021/am301600u
10.1002/anie.201812950
10.1063/1.463637
10.1007/978-3-319-01104-2
10.1107/S0021889887087181
10.3390/molecules25235624
10.1021/acs.accounts.9b00528
10.1038/s41598-020-61096-x
10.1021/ja037118a
10.1371/journal.pone.0103878
10.1021/acsami.9b23413
10.1021/ja807714j
10.1039/ft9969203385
10.1021/acs.chemrev.7b00425
10.1016/j.addr.2012.02.002
10.1016/j.biomaterials.2014.11.005
10.1016/j.progpolymsci.2008.01.002
10.1073/pnas.93.13.6264
10.1021/bm9004639
10.1023/A:1015071103237
10.1107/S0021889810015773
10.1016/j.biomaterials.2010.06.030
10.1002/anie.201911048
10.1016/S0001-8686(98)00071-2
10.1021/ma00100a058
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jcis.2021.09.163
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 385
ExternalDocumentID 34626983
10_1016_j_jcis_2021_09_163
S0021979721016295
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c433t-e9f40647e549fd9a5f70823dba96c31f15caf69d0b317e345aba91ba1711fadf3
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 16:00:05 EDT 2025
Fri Jul 11 16:02:31 EDT 2025
Thu Apr 03 06:58:11 EDT 2025
Tue Jul 01 01:19:11 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Fri Feb 23 02:47:00 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt 1
Keywords Nanogel
SANS
pH-responsive
Polyacrylamide
FRET
Hydrogel
Probe
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-e9f40647e549fd9a5f70823dba96c31f15caf69d0b317e345aba91ba1711fadf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2246-6552
0000-0003-3386-9151
OpenAccessLink https://www.research.manchester.ac.uk/portal/en/publications/comparing-phresponsive-nanogel-swelling-in-dispersion-and-inside-a-polyacrylamide-gel-using-photoluminescence-spectroscopy-and-smallangle-neutron-scattering(8b514c60-bbd6-4227-a430-948dd10ec3b4).html
PMID 34626983
PQID 2580694056
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2636502779
proquest_miscellaneous_2580694056
pubmed_primary_34626983
crossref_citationtrail_10_1016_j_jcis_2021_09_163
crossref_primary_10_1016_j_jcis_2021_09_163
elsevier_sciencedirect_doi_10_1016_j_jcis_2021_09_163
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wu, Yao, Wang, Xie, Zhang, Jiang (b0115) 2015; 39
Kryuchkov (b0235) 2001; 42
Xu, Xu, Lin, Jiang, Zhang, Li, Ma, Zhang, Li, Kai, Yu, Loh (b0080) 2021; 4
Amalvy, Wanless, Li, Michailidou, Armes, Duccini (b0045) 2004; 20
Gota, Okabe, Funatsu, Harada, Uchiyama (b0110) 2009; 131
Zhang, Sun, Wang, Xu, Qu, Xia, Shen, Shi (b0025) 2020; 12
Cavaye (b0160) 2019; 58
Wignall, Bates (b0215) 1987; 20
Milani, Saunders, Nguyen, Ratcliffe, Adlam, Freemont, Hoyland, Armes, Saunders (b0030) 2017; 13
Hammouda (b0225) 2010; 43
R.A. Pethrick, J.V. Dawkins, Modern techniques for polymer characterisation, Wiley, 1999 (Chapter 7).
Reese, Mikhonin, Kamenjicki, Tikhonov, Asher (b0105) 2004; 126
Ahmadi, Mahmoudi, Li, Ma, Doutch, Foglia, Heenan, Barlow, Lawrence (b0210) 2020; 10
Hoare, Pelton (b0040) 2004; 37
Higgins, Benoit (b0165) 1996
B. Hamouda, Probing nanoscale structures - The SANS Toolbox
Wu, Shen, Banerjee, Zhou (b0090) 2010; 31
Lakowicz (b0175) 2010
Rey, Fernandez-Rodriguez, Karg, Isa, Vogel (b0020) 2020; 53
Zhu, Lu, Wu, Lian, Wang, Milani, Cui, Nguyen, Chen, Lyon, Adlam, Freemont, Hoyland, Saunders (b0125) 2017; 6
Yuan, Lin, Zheng, Zhu (b0185) 2013; 46
Rambo, Tainer (b0140) 2013; 496
Ha, Enderle, Ogletree, Chemla, Selvin, Weiss (b0180) 1996; 93
Saunders, Vincent (b0035) 1999; 80
Fujioka-Kobayashi, Ota, Shimoda, Nakahama, Akiyoshi, Miyamoto, Iseki (b0070) 2012; 33
Fonin, Sulatskaya, Kuznetsova, Turoverov (b0135) 2014; 9
Karino, Ikeda, Yasuda, Kohjiya, Shibayama (b0255) 2007; 8
Rodriguez, Wolfe, Fryd (b0245) 1994; 27
Downloaded 29/04/21.
Cosgrove (b0200) 2010
Gan, Lyon (b0240) 2001; 123
Saunders, Vincent (b0260) 1996; 92
pp. 197–205.
Zhao, Zhang, Wu, Li, Zhang, Chen, Xing (b0055) 2021; 60
Milani, Saunders, Nguyen, Wu, Saunders (b0265) 2021; 33
Oh, Drumright, Siegwart, Matyjaszewski (b0050) 2008; 33
Gao, Li, Ding, Liu, Wu, Li, Feng, Zhu, Zhang (b0060) 2021; 33
Zhang, Yu, Wei, Liu, Zhao, Huang (b0130) 2018; 118
Weldrick, San, Paunov (b0065) 2021; 4
Pérez, Lang (b0190) 1999; 103
Chacko, Ventura, Zhuang, Thayumanavan (b0010) 2012; 64
Ornstein, Zernike (b0230) 1914; 17
b0220
Quan, Wang, Zhou, Kumar, Narain (b0100) 2015; 16
Bencherif, Washburn, Matyjaszewski (b0075) 2009; 10
Accessed May 26, 2021.
Molina, Asadian-Birjand, Balach, Bergueiro, Miceli, Calderón (b0085) 2015; 44
Lombardo, Calandra, Kiselev (b0155) 2020; 25
Shibayama, Tanaka, Han (b0250) 1992; 97
Y.B. Melnichenko, Small-angle scattering from confined and interfacial Fluids, Springer (eBook), 2016.
Ryu, Chacko, Jiwpanich, Bickerton, Babu, Thayumanavan (b0005) 2010; 132
B.H. Tan, J.P.K. Tan, K.C. Tam, in: L.A. Lyon, M.J. Serpe (Eds.) Hydrogel micro and nanoparticles, Wiley, 2012 (Chapter 4).
Jiang, Zhou, Mu, Xie, Zhu, Zhu, Zhao, Xu, Yang (b0095) 2013; 34
Xing, Mao, Lai, Yan (b0120) 2012; 4
P. K. Pranzas, in: Neutrons and Synchrotron Radiation in Engineering Materials Science, 2017, doi
Rambo (10.1016/j.jcis.2021.09.163_b0140) 2013; 496
Shibayama (10.1016/j.jcis.2021.09.163_b0250) 1992; 97
Yuan (10.1016/j.jcis.2021.09.163_b0185) 2013; 46
Hoare (10.1016/j.jcis.2021.09.163_b0040) 2004; 37
Ha (10.1016/j.jcis.2021.09.163_b0180) 1996; 93
Chacko (10.1016/j.jcis.2021.09.163_b0010) 2012; 64
Weldrick (10.1016/j.jcis.2021.09.163_b0065) 2021; 4
Higgins (10.1016/j.jcis.2021.09.163_b0165) 1996
Milani (10.1016/j.jcis.2021.09.163_b0265) 2021; 33
Wignall (10.1016/j.jcis.2021.09.163_b0215) 1987; 20
Pérez (10.1016/j.jcis.2021.09.163_b0190) 1999; 103
Fonin (10.1016/j.jcis.2021.09.163_b0135) 2014; 9
10.1016/j.jcis.2021.09.163_b0195
10.1016/j.jcis.2021.09.163_b0150
10.1016/j.jcis.2021.09.163_b0220
10.1016/j.jcis.2021.09.163_b0145
Kryuchkov (10.1016/j.jcis.2021.09.163_b0235) 2001; 42
Fujioka-Kobayashi (10.1016/j.jcis.2021.09.163_b0070) 2012; 33
Rodriguez (10.1016/j.jcis.2021.09.163_b0245) 1994; 27
Gan (10.1016/j.jcis.2021.09.163_b0240) 2001; 123
Lombardo (10.1016/j.jcis.2021.09.163_b0155) 2020; 25
Ornstein (10.1016/j.jcis.2021.09.163_b0230) 1914; 17
Gao (10.1016/j.jcis.2021.09.163_b0060) 2021; 33
Molina (10.1016/j.jcis.2021.09.163_b0085) 2015; 44
Lakowicz (10.1016/j.jcis.2021.09.163_b0175) 2010
Amalvy (10.1016/j.jcis.2021.09.163_b0045) 2004; 20
Xing (10.1016/j.jcis.2021.09.163_b0120) 2012; 4
10.1016/j.jcis.2021.09.163_b0015
Reese (10.1016/j.jcis.2021.09.163_b0105) 2004; 126
Wu (10.1016/j.jcis.2021.09.163_b0115) 2015; 39
Saunders (10.1016/j.jcis.2021.09.163_b0035) 1999; 80
Quan (10.1016/j.jcis.2021.09.163_b0100) 2015; 16
Rey (10.1016/j.jcis.2021.09.163_b0020) 2020; 53
Jiang (10.1016/j.jcis.2021.09.163_b0095) 2013; 34
Zhang (10.1016/j.jcis.2021.09.163_b0025) 2020; 12
Cavaye (10.1016/j.jcis.2021.09.163_b0160) 2019; 58
10.1016/j.jcis.2021.09.163_b0170
Ryu (10.1016/j.jcis.2021.09.163_b0005) 2010; 132
Bencherif (10.1016/j.jcis.2021.09.163_b0075) 2009; 10
Cosgrove (10.1016/j.jcis.2021.09.163_b0200) 2010
Milani (10.1016/j.jcis.2021.09.163_b0030) 2017; 13
10.1016/j.jcis.2021.09.163_b0205
Ahmadi (10.1016/j.jcis.2021.09.163_b0210) 2020; 10
Gota (10.1016/j.jcis.2021.09.163_b0110) 2009; 131
Hammouda (10.1016/j.jcis.2021.09.163_b0225) 2010; 43
Xu (10.1016/j.jcis.2021.09.163_b0080) 2021; 4
Saunders (10.1016/j.jcis.2021.09.163_b0260) 1996; 92
Zhao (10.1016/j.jcis.2021.09.163_b0055) 2021; 60
Zhang (10.1016/j.jcis.2021.09.163_b0130) 2018; 118
Karino (10.1016/j.jcis.2021.09.163_b0255) 2007; 8
Oh (10.1016/j.jcis.2021.09.163_b0050) 2008; 33
Wu (10.1016/j.jcis.2021.09.163_b0090) 2010; 31
Zhu (10.1016/j.jcis.2021.09.163_b0125) 2017; 6
References_xml – reference: R.A. Pethrick, J.V. Dawkins, Modern techniques for polymer characterisation, Wiley, 1999 (Chapter 7).
– volume: 37
  start-page: 2544
  year: 2004
  end-page: 2550
  ident: b0040
  publication-title: Macromolecules
– volume: 25
  start-page: 5624
  year: 2020
  ident: b0155
  publication-title: Molecules
– volume: 132
  start-page: 17227
  year: 2010
  end-page: 17235
  ident: b0005
  publication-title: J. Am. Chem. Soc.
– reference: , pp. 197–205.
– year: 2010
  ident: b0200
  article-title: Colloid Science: Principles, Methods and Applications
– reference: Accessed May 26, 2021.
– volume: 33
  start-page: 448
  year: 2008
  end-page: 477
  ident: b0050
  publication-title: Prog. Polym. Sci.
– volume: 123
  start-page: 8203
  year: 2001
  end-page: 8209
  ident: b0240
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 7613
  year: 2012
  end-page: 7620
  ident: b0070
  publication-title: Biomaterials
– volume: 6
  start-page: 1245
  year: 2017
  end-page: 1250
  ident: b0125
  publication-title: ACS Macro Lett.
– volume: 97
  start-page: 6842
  year: 1992
  end-page: 6854
  ident: b0250
  publication-title: J. Chem. Phys.
– volume: 60
  start-page: 14760
  year: 2021
  end-page: 14778
  ident: b0055
  publication-title: Angew. Chem. Int. Ed.
– reference: , Downloaded 29/04/21.
– volume: 12
  start-page: 9107
  year: 2020
  end-page: 9117
  ident: b0025
  publication-title: ACS Appl. Mater. Interf.
– volume: 131
  start-page: 2766
  year: 2009
  end-page: 2767
  ident: b0110
  publication-title: J. Am. Chem. Soc.
– reference: B. Hamouda, Probing nanoscale structures - The SANS Toolbox,
– volume: 46
  start-page: 1462
  year: 2013
  end-page: 1473
  ident: b0185
  publication-title: Acc. Chem. Res.
– reference: P. K. Pranzas, in: Neutrons and Synchrotron Radiation in Engineering Materials Science, 2017, doi:
– volume: 33
  start-page: 2006116
  year: 2021
  ident: b0060
  publication-title: Adv. Mater.
– volume: 53
  start-page: 414
  year: 2020
  end-page: 424
  ident: b0020
  publication-title: Acc. Chem. Res.
– volume: 64
  start-page: 836
  year: 2012
  end-page: 851
  ident: b0010
  publication-title: Adv. Drug. Deliv. Rev.
– volume: 39
  start-page: 260
  year: 2015
  end-page: 268
  ident: b0115
  publication-title: Biomaterials
– volume: 118
  start-page: 1770
  year: 2018
  end-page: 1839
  ident: b0130
  publication-title: Chem. Rev.
– volume: 58
  start-page: 9338
  year: 2019
  end-page: 9346
  ident: b0160
  publication-title: Angew. Chem. Int. Ed.
– volume: 31
  start-page: 7555
  year: 2010
  end-page: 7566
  ident: b0090
  publication-title: Biomaterials
– volume: 42
  start-page: 390
  year: 2001
  end-page: 392
  ident: b0235
  publication-title: Refract. Ind. Ceram.
– volume: 44
  start-page: 6161
  year: 2015
  end-page: 6186
  ident: b0085
  publication-title: Chem. Soc. Rev.
– year: 1996
  ident: b0165
  article-title: Polymers and Neutron Scattering
– volume: 17
  start-page: 134
  year: 1914
  ident: b0230
  publication-title: Proc. Acad. Sci. Amerstdam
– volume: 4
  start-page: 5662
  year: 2012
  end-page: 5672
  ident: b0120
  publication-title: ACS Appl. Mater. Interf.
– ident: b0220
– reference: B.H. Tan, J.P.K. Tan, K.C. Tam, in: L.A. Lyon, M.J. Serpe (Eds.) Hydrogel micro and nanoparticles, Wiley, 2012 (Chapter 4).
– volume: 34
  start-page: 7418
  year: 2013
  end-page: 7428
  ident: b0095
  publication-title: Biomaterials
– volume: 10
  start-page: 4082
  year: 2020
  ident: b0210
  publication-title: Sci. Rep.
– volume: 8
  start-page: 693
  year: 2007
  end-page: 699
  ident: b0255
  publication-title: Biomacromolecules
– volume: 20
  start-page: 28
  year: 1987
  end-page: 40
  ident: b0215
  publication-title: J. Appl. Crystallog.
– volume: 4
  start-page: 3
  year: 2021
  end-page: 13
  ident: b0080
  publication-title: ACS Appl. Bio Mater.
– volume: 9
  year: 2014
  ident: b0135
  publication-title: PLOS ONE
– volume: 16
  start-page: 1978
  year: 2015
  end-page: 1986
  ident: b0100
  publication-title: Biomacromolecules
– reference: Y.B. Melnichenko, Small-angle scattering from confined and interfacial Fluids, Springer (eBook), 2016.
– volume: 92
  start-page: 3385
  year: 1996
  end-page: 3389
  ident: b0260
  publication-title: J. Chem. Soc., Faraday Trans.
– volume: 103
  start-page: 2072
  year: 1999
  end-page: 2084
  ident: b0190
  publication-title: J. Phys. Chem. B
– year: 2010
  ident: b0175
  article-title: Principles of Fluorescence Spectroscopy
– volume: 80
  start-page: 1
  year: 1999
  end-page: 25
  ident: b0035
  publication-title: Adv. Coll. Interf. Sci.
– volume: 126
  start-page: 1493
  year: 2004
  end-page: 1496
  ident: b0105
  publication-title: J. Am. Chem. Soc.
– volume: 496
  start-page: 477
  year: 2013
  end-page: 481
  ident: b0140
  publication-title: Nature
– volume: 4
  start-page: 1187
  year: 2021
  end-page: 1201
  ident: b0065
  publication-title: ACS Appl. Mater. Interf.
– volume: 93
  start-page: 6264
  year: 1996
  ident: b0180
  publication-title: PNAS
– volume: 27
  start-page: 6642
  year: 1994
  end-page: 6647
  ident: b0245
  publication-title: Macromolecules
– volume: 33
  start-page: 2319
  year: 2021
  end-page: 2330
  ident: b0265
  publication-title: Chem. Mater.
– volume: 10
  start-page: 2499
  year: 2009
  end-page: 2507
  ident: b0075
  publication-title: Biomacromolecules
– volume: 43
  start-page: 716
  year: 2010
  end-page: 719
  ident: b0225
  publication-title: J. Appl. Cryst.
– volume: 13
  start-page: 1554
  year: 2017
  end-page: 1560
  ident: b0030
  publication-title: Soft Matter
– volume: 20
  start-page: 8992
  year: 2004
  end-page: 8999
  ident: b0045
  publication-title: Langmuir
– year: 2010
  ident: 10.1016/j.jcis.2021.09.163_b0175
– year: 1996
  ident: 10.1016/j.jcis.2021.09.163_b0165
– volume: 16
  start-page: 1978
  year: 2015
  ident: 10.1016/j.jcis.2021.09.163_b0100
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b00576
– volume: 20
  start-page: 8992
  year: 2004
  ident: 10.1016/j.jcis.2021.09.163_b0045
  publication-title: Langmuir
  doi: 10.1021/la049156t
– ident: 10.1016/j.jcis.2021.09.163_b0150
  doi: 10.1002/9783527684489.ch11
– volume: 103
  start-page: 2072
  year: 1999
  ident: 10.1016/j.jcis.2021.09.163_b0190
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp982855s
– volume: 123
  start-page: 8203
  year: 2001
  ident: 10.1016/j.jcis.2021.09.163_b0240
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja015974l
– volume: 496
  start-page: 477
  year: 2013
  ident: 10.1016/j.jcis.2021.09.163_b0140
  publication-title: Nature
  doi: 10.1038/nature12070
– volume: 44
  start-page: 6161
  year: 2015
  ident: 10.1016/j.jcis.2021.09.163_b0085
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00199D
– volume: 6
  start-page: 1245
  year: 2017
  ident: 10.1016/j.jcis.2021.09.163_b0125
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.7b00709
– volume: 34
  start-page: 7418
  year: 2013
  ident: 10.1016/j.jcis.2021.09.163_b0095
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.05.078
– volume: 8
  start-page: 693
  year: 2007
  ident: 10.1016/j.jcis.2021.09.163_b0255
  publication-title: Biomacromolecules
  doi: 10.1021/bm060983d
– volume: 37
  start-page: 2544
  year: 2004
  ident: 10.1016/j.jcis.2021.09.163_b0040
  publication-title: Macromolecules
  doi: 10.1021/ma035658m
– volume: 4
  start-page: 1187
  year: 2021
  ident: 10.1016/j.jcis.2021.09.163_b0065
  publication-title: ACS Appl. Mater. Interf.
– volume: 132
  start-page: 17227
  year: 2010
  ident: 10.1016/j.jcis.2021.09.163_b0005
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1069932
– volume: 13
  start-page: 1554
  year: 2017
  ident: 10.1016/j.jcis.2021.09.163_b0030
  publication-title: Soft Matter
  doi: 10.1039/C6SM02713J
– volume: 4
  start-page: 3
  year: 2021
  ident: 10.1016/j.jcis.2021.09.163_b0080
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.0c00858
– volume: 33
  start-page: 2006116
  year: 2021
  ident: 10.1016/j.jcis.2021.09.163_b0060
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006116
– volume: 33
  start-page: 2319
  year: 2021
  ident: 10.1016/j.jcis.2021.09.163_b0265
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c04400
– volume: 33
  start-page: 7613
  year: 2012
  ident: 10.1016/j.jcis.2021.09.163_b0070
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.06.075
– volume: 46
  start-page: 1462
  year: 2013
  ident: 10.1016/j.jcis.2021.09.163_b0185
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300273v
– volume: 4
  start-page: 5662
  year: 2012
  ident: 10.1016/j.jcis.2021.09.163_b0120
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/am301600u
– ident: 10.1016/j.jcis.2021.09.163_b0205
– volume: 58
  start-page: 9338
  year: 2019
  ident: 10.1016/j.jcis.2021.09.163_b0160
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201812950
– volume: 97
  start-page: 6842
  year: 1992
  ident: 10.1016/j.jcis.2021.09.163_b0250
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463637
– ident: 10.1016/j.jcis.2021.09.163_b0145
  doi: 10.1007/978-3-319-01104-2
– volume: 20
  start-page: 28
  year: 1987
  ident: 10.1016/j.jcis.2021.09.163_b0215
  publication-title: J. Appl. Crystallog.
  doi: 10.1107/S0021889887087181
– volume: 25
  start-page: 5624
  year: 2020
  ident: 10.1016/j.jcis.2021.09.163_b0155
  publication-title: Molecules
  doi: 10.3390/molecules25235624
– ident: 10.1016/j.jcis.2021.09.163_b0015
– volume: 53
  start-page: 414
  year: 2020
  ident: 10.1016/j.jcis.2021.09.163_b0020
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00528
– ident: 10.1016/j.jcis.2021.09.163_b0195
– volume: 10
  start-page: 4082
  year: 2020
  ident: 10.1016/j.jcis.2021.09.163_b0210
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61096-x
– volume: 126
  start-page: 1493
  year: 2004
  ident: 10.1016/j.jcis.2021.09.163_b0105
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja037118a
– volume: 9
  year: 2014
  ident: 10.1016/j.jcis.2021.09.163_b0135
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0103878
– volume: 12
  start-page: 9107
  year: 2020
  ident: 10.1016/j.jcis.2021.09.163_b0025
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.9b23413
– volume: 131
  start-page: 2766
  year: 2009
  ident: 10.1016/j.jcis.2021.09.163_b0110
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja807714j
– volume: 92
  start-page: 3385
  year: 1996
  ident: 10.1016/j.jcis.2021.09.163_b0260
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/ft9969203385
– volume: 118
  start-page: 1770
  year: 2018
  ident: 10.1016/j.jcis.2021.09.163_b0130
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00425
– volume: 64
  start-page: 836
  year: 2012
  ident: 10.1016/j.jcis.2021.09.163_b0010
  publication-title: Adv. Drug. Deliv. Rev.
  doi: 10.1016/j.addr.2012.02.002
– volume: 39
  start-page: 260
  year: 2015
  ident: 10.1016/j.jcis.2021.09.163_b0115
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.11.005
– volume: 33
  start-page: 448
  year: 2008
  ident: 10.1016/j.jcis.2021.09.163_b0050
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2008.01.002
– volume: 93
  start-page: 6264
  year: 1996
  ident: 10.1016/j.jcis.2021.09.163_b0180
  publication-title: PNAS
  doi: 10.1073/pnas.93.13.6264
– volume: 10
  start-page: 2499
  year: 2009
  ident: 10.1016/j.jcis.2021.09.163_b0075
  publication-title: Biomacromolecules
  doi: 10.1021/bm9004639
– volume: 42
  start-page: 390
  year: 2001
  ident: 10.1016/j.jcis.2021.09.163_b0235
  publication-title: Refract. Ind. Ceram.
  doi: 10.1023/A:1015071103237
– volume: 43
  start-page: 716
  year: 2010
  ident: 10.1016/j.jcis.2021.09.163_b0225
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889810015773
– volume: 31
  start-page: 7555
  year: 2010
  ident: 10.1016/j.jcis.2021.09.163_b0090
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.06.030
– ident: 10.1016/j.jcis.2021.09.163_b0170
– volume: 17
  start-page: 134
  year: 1914
  ident: 10.1016/j.jcis.2021.09.163_b0230
  publication-title: Proc. Acad. Sci. Amerstdam
– volume: 60
  start-page: 14760
  year: 2021
  ident: 10.1016/j.jcis.2021.09.163_b0055
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201911048
– year: 2010
  ident: 10.1016/j.jcis.2021.09.163_b0200
– volume: 80
  start-page: 1
  year: 1999
  ident: 10.1016/j.jcis.2021.09.163_b0035
  publication-title: Adv. Coll. Interf. Sci.
  doi: 10.1016/S0001-8686(98)00071-2
– volume: 27
  start-page: 6642
  year: 1994
  ident: 10.1016/j.jcis.2021.09.163_b0245
  publication-title: Macromolecules
  doi: 10.1021/ma00100a058
– ident: 10.1016/j.jcis.2021.09.163_b0220
SSID ssj0011559
Score 2.4419422
Snippet [Display omitted] Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for...
Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 378
SubjectTerms Acrylic Resins
drugs
energy transfer
fluorescence
FRET
Hydrogel
Hydrogels
Hydrogen-Ion Concentration
Nanogel
Nanogels
neutrons
pH-responsive
photoluminescence
Polyacrylamide
Probe
SANS
Scattering, Small Angle
spectroscopy
Spectrum Analysis
Title Comparing pH-responsive nanogel swelling in dispersion and inside a polyacrylamide gel using photoluminescence spectroscopy and small-angle neutron scattering
URI https://dx.doi.org/10.1016/j.jcis.2021.09.163
https://www.ncbi.nlm.nih.gov/pubmed/34626983
https://www.proquest.com/docview/2580694056
https://www.proquest.com/docview/2636502779
Volume 608
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOiJbXQqmMxA2ZxrETr4_VqtUCoicq9WbZjrOkSp1oH0h74afwW5nJYwWH7qFXx55YnvHM2J75hpCPYFOslqVlqbMZkyEkzIEhZArMrYMDkU-7Kgrfr_L5tfx6k90ckNmYC4NhlYPu73V6p62HlrNhNc_aqsIcX9htCtFnwG1JNSaaS6lQyj__3oV5cHx268M8OMPeQ-JMH-N16yuE7E45Yp3yXNxnnO5zPjsjdPmcPBu8R3reT_CIHIR4TB7PxqJtx-TpP_iCL8ifWV9lMC5oO2fLIRz2V6DRxmYRarrCqzv8XEVaVAgajpdn1MYCWrCQJ7W0beqt9cstiA424DAMlgeSP5s16jYMnPe4cLRL20R4zKbddkRWd7aumY2LGv4ZNnjtTle-g_QECi_J9eXFj9mcDQUZmJdCrFnQpcTk1ACHyrLQNisVPtQVzurcC17yzNsy10XiwCsJQmYWvnBnueK8tEUpXpHD2MTwhlBnBWiX4AstrExcMQUi08QrJXLgvBQTwkdOGD-glWPRjNqMYWm3BrlnkHsm0Qa4NyGfdmPaHqtjb-9sZLD5T-IMGJO94z6M0mCAufi-YmNoNtApm2IaMbiUe_rkAnziVCk9Ia97UdrNVUg4XeqpePvAmb0jT1JMzsByNdkJOVwvN-E9uExrd9rtiVPy6PzLt_nVX3JNGh8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa69NDtMHTdK9u6acBug1DLsuzoWAQr3FdOLdCbIMty5sKTjTwK5M_0t470I9gOzaFXWaIFkSIpifxIyA-wKUZFhWFhZiSLnAtYBoaQJWBuMzgQ2bCtonA9i9Pb6OJO3u2R6ZALg2GVve7vdHqrrfuWk341T5qyxBxf2G0Jos-A2xIq-YLsIzqVHJH90_PLdLZ9TMCXty7SgzMc0OfOdGFe97ZE1O6QI9wpj8VT9ukp_7O1Q2eH5HXvQNLTbo5vyJ7zR-RgOtRtOyKv_oEYfEsep12hQT-nTcoWfUTsg6Pe-HruKrrE2zv8XHqal4gbjvdn1PgcWrCWJzW0qauNsYsNSA824DCMlweSv-sVqjeMnbe4drTN3ESEzLrZtESWf0xVMePnFfzTrfHmnS5ti-oJFN6R27NfN9OU9TUZmI2EWDGnigjzUx2cK4tcGVkk-FaXZ0bFVvCCS2uKWOVBBo6JE5E08IVnhiecFyYvxHsy8rV3HwnNjAAF42yuhImCLJ8AkUlgk0TEwPxIjAkfOKFtD1iOdTMqPUSm3Wvknkbu6UBp4N6Y_NyOaTq4jp295cBg_Z_QabAnO8d9H6RBA3PxicV4V6-hk5xgJjF4lTv6xALc4jBJ1Jh86ERpO1cRwQFTTcSnZ87sGzlIb66v9NX57PIzeRlirgZWr5FfyGi1WLtj8KBW2dd-h_wFAIUc0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+pH-responsive+nanogel+swelling+in+dispersion+and+inside+a+polyacrylamide+gel+using+photoluminescence+spectroscopy+and+small-angle+neutron+scattering&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Zhu%2C+Mingning&rft.au=Lu%2C+Dongdong&rft.au=Milani%2C+Amir+H&rft.au=Mahmoudi%2C+Najet&rft.date=2022-02-15&rft.issn=0021-9797&rft.volume=608+p.378-385&rft.spage=378&rft.epage=385&rft_id=info:doi/10.1016%2Fj.jcis.2021.09.163&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon