Comparing pH-responsive nanogel swelling in dispersion and inside a polyacrylamide gel using photoluminescence spectroscopy and small-angle neutron scattering

[Display omitted] Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (N...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 608; no. Pt 1; pp. 378 - 385
Main Authors Zhu, Mingning, Lu, Dongdong, Milani, Amir H., Mahmoudi, Najet, King, Stephen M., Saunders, Brian R.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (NG) that used Förster-resonance energy transfer (FRET) to report changes in the probe separation and NG swelling within hydrogels using photoluminescence (PL) spectroscopy. However, FRET cannot measure nanoparticle dimensions and is subject to artefacts. Here, we report the use of small-angle neutron scattering (SANS) to study both the NGs in dispersion and in polyacrylamide (PAAm) gels as a function of pH. We compare the PL and SANS data for both systems and as a function of pH. The SANS data for the dispersed NGs indicate that they have a core–shell structure with a swollen mesh size of ∼1.0 nm. We hypothesized that the NGs inside the PAAm gel would show the same general changes in scattering as the pH is increased, as observed for the dispersed NGs, and this is confirmed by the data. In summary, the data confirm that PL is a suitable (accessible) method for reporting internal environmental changes within gels using NG probes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
1095-7103
DOI:10.1016/j.jcis.2021.09.163