A 0.87 W Transceiver IC for 100 Gigabit Ethernet in 40 nm CMOS
This paper describes a low-power 100 Gigabit Ethernet transceiver IC compliant with IEEE802.3ba 100GBASE-LR4 in 40 nm CMOS. The proposed bidirectional full-duplex transceiver IC contains a total of eight 28 Gb/s CDRs. Each CDR lane incorporates phase-rotator-based delay- and phase-locked loop (D/PLL...
Saved in:
Published in | IEEE journal of solid-state circuits Vol. 50; no. 2; pp. 399 - 413 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper describes a low-power 100 Gigabit Ethernet transceiver IC compliant with IEEE802.3ba 100GBASE-LR4 in 40 nm CMOS. The proposed bidirectional full-duplex transceiver IC contains a total of eight 28 Gb/s CDRs. Each CDR lane incorporates phase-rotator-based delay- and phase-locked loop (D/PLL) architecture for enhanced jitter filtering. All the CDR lanes operate independently while sharing a single voltage-controlled oscillator and supporting referenceless clock acquisition. To reduce power consumption, a multidrop clock distribution scheme with single on-chip transmission-line (T-line) and quadrate RX and TX schemes without CML logic gates are incorporated. Embedded built-in self-test modules featuring a random accumulation jitter generator enables bit error rate (BER) and jitter tolerance self tests without any external equipment. The TX featuring a three-tap pre-emphasis provides a variable output swing ranging from 478 mV ppd to 1.06 V ppd . RX equalizers employing a continuous-time linear equalizer and a one-tap decision feedback equalizer compensate for the channel loss up to 25 dB at the Nyquist rate. The measured RX input sensitivity for a BER of 10 -12 is 42 mV ppd . The proposed IC consumes only 0.87 W at 28.0 Gb/s with a BER less than 10 -15 on PRBS31 testing. The power efficiency of the proposed transceiver is 3.9 mW/Gb/s, which is the best among the efficiencies achieved by recently published 25 Gb/s transceivers. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2014.2369494 |