Independent Predictors of Circulating Trimethylamine N-Oxide (TMAO) and Resistin Levels in Subjects with Obesity: Associations with Carotid Intima-Media Thickness and Metabolic Parameters

Background: Obesity contributes to cardiometabolic risk, including subclinical atherosclerosis and insulin resistance. This study examines the predictive roles of trimethylamine N-oxide (TMAO) and resistin in relation to carotid intima-media thickness and metabolic parameters; Methods: Sixty adults...

Full description

Saved in:
Bibliographic Details
Published inNutrients Vol. 17; no. 5; p. 798
Main Authors Pescari, Denisa, Mihuta, Monica Simina, Bena, Andreea, Stoian, Dana
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.03.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background: Obesity contributes to cardiometabolic risk, including subclinical atherosclerosis and insulin resistance. This study examines the predictive roles of trimethylamine N-oxide (TMAO) and resistin in relation to carotid intima-media thickness and metabolic parameters; Methods: Sixty adults (18–71 years) with varying body weights were assessed for body composition, subclinical atherosclerosis, and blood biomarkers, including TMAO and resistin; Results: TMAO correlated strongly with CIMT (r = 0.674, p < 0.001), indicating its role in subclinical atherosclerosis. Logistic regression identified TMAO (threshold 380; AUC = 0.880, accuracy = 91.7%) as a predictor of cardiometabolic risk. Resistin was associated with CIMT, WHR, and total cholesterol, inversely linked to LDL cholesterol (p = 0.003). Less active participants exhibited higher TMAO (p = 0.001) and resistin (p = 0.02). Family histories of obesity and diabetes correlated with elevated TMAO, while resistin linked to shorter sleep duration and diabetes history, highlighting their importance in obesity-related cardiometabolic risks; Conclusions: TMAO is strongly linked to abdominal fat, insulin resistance, and subclinical atherosclerosis, while resistin is associated with lipid metabolism and aging. Their combined assessment enhances the prediction of obesity-related cardiometabolic risk, supporting their role in risk stratification and targeted interventions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-6643
2072-6643
DOI:10.3390/nu17050798