Liquid–metal-induced fracture mode of martensitic T91 steels

The liquid–metal-induced fracture mode of T91 martensitic steel was investigated by using transmission electron microscopy techniques to characterize the microstructure and crack network in specimens obtained from focused-ion beam machining at and immediately below the fracture surface. Contrary to...

Full description

Saved in:
Bibliographic Details
Published inJournal of nuclear materials Vol. 426; no. 1-3; pp. 71 - 77
Main Authors Martin, M.L., Auger, T., Johnson, D.D., Robertson, I.M.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.07.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The liquid–metal-induced fracture mode of T91 martensitic steel was investigated by using transmission electron microscopy techniques to characterize the microstructure and crack network in specimens obtained from focused-ion beam machining at and immediately below the fracture surface. Contrary to previous claims of quasi-cleavage fracture, the dominant fracture mode is intergranular cracking at martensite laths and prior austenite grain boundaries. These fracture mode results clarify an outstanding issue in liquid–metal embrittlement of steels that generally occur in a heavily-deformed microstructure. Several cracks were arrested at intergranular carbides, suggesting a metallurgical strategy for impeding liquid–metal-induced crack propagation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2012.03.040